Files
candle-coursera-ml/self-attention/src/main.rs
2025-02-14 15:57:50 -05:00

67 lines
1.6 KiB
Rust

use anyhow::Ok;
use anyhow::Result;
use candle_core::{DType, Device, Tensor};
use candle_nn::ops::softmax;
use candle_nn::VarBuilder;
use candle_nn::{linear, Linear, Module, VarMap};
struct SelfAttention {
d: usize, // Embedding size
scale: Tensor,
w_q: Linear,
w_k: Linear,
w_v: Linear,
}
impl SelfAttention {
fn new(d: usize, vb: VarBuilder) -> Result<Self> {
let d = d;
let scale = Tensor::new((d as f32).sqrt(), vb.device())?;
let w_q = linear(d, d, vb.pp("w_q"))?;
let w_k = linear(d, d, vb.pp("w_k"))?;
let w_v = linear(d, d, vb.pp("w_v"))?;
Ok(Self {
d,
scale,
w_q,
w_k,
w_v,
})
}
}
impl SelfAttention {
fn attention(&self, x: &Tensor) -> Result<Tensor> {
let q = self.w_q.forward(x)?;
let k = self.w_k.forward(x)?;
let v = self.w_v.forward(x)?;
let qk = q.matmul(&k.transpose(1, 0)?)?;
let qk = qk.broadcast_div(&self.scale)?;
let qk = softmax(&qk, 1)?;
Ok(qk.matmul(&v)?)
}
}
fn main() -> Result<()> {
let device = Device::cuda_if_available(0)?;
let varmap = VarMap::new();
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &device);
let self_attn = SelfAttention::new(2, vs)?;
let encoding_matrix = Tensor::new(
vec![
vec![1.16 as f32, 0.23 as f32],
vec![0.57 as f32, 1.36 as f32],
vec![4.41 as f32, -2.16 as f32],
],
&device,
)?;
let attn = self_attn.attention(&encoding_matrix)?;
println!("{}", attn);
Ok(())
}