Files
greptimedb/benchmarks/src/wal_bench.rs
niebayes d33435fa84 feat: introduce wal benchmarker (#3446)
* feat: introduce wal benchmarker

* chore: add log store metrics

* chore: add some comments to wal benchmarker

* fix: ci

* chore: add more metrics for kafka logstore

* chore: add more timers for kafka logstore

* chore: add more configs

* chore: move humantime to common dependencies

* refactor: refactor wal benchmarker

* fix: apply suggestions from code review

* doc: add a simple README for wal benchmarker

* fix: Cargo.toml

* fix: clippy

* chore: rename wal.rs to wal_bench.rs

* fix: compile
2024-04-03 03:16:05 +00:00

362 lines
12 KiB
Rust

// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::mem::size_of;
use std::sync::atomic::{AtomicI64, AtomicU64, Ordering};
use std::sync::{Arc, Mutex};
use std::time::Duration;
use api::v1::value::ValueData;
use api::v1::{ColumnDataType, ColumnSchema, Mutation, OpType, Row, Rows, Value, WalEntry};
use clap::{Parser, ValueEnum};
use common_base::readable_size::ReadableSize;
use common_wal::options::WalOptions;
use futures::StreamExt;
use mito2::wal::{Wal, WalWriter};
use rand::distributions::{Alphanumeric, DistString, Uniform};
use rand::rngs::SmallRng;
use rand::{Rng, SeedableRng};
use serde::{Deserialize, Serialize};
use store_api::logstore::LogStore;
use store_api::storage::RegionId;
use crate::metrics;
/// The wal provider.
#[derive(Clone, ValueEnum, Default, Debug, PartialEq, Serialize, Deserialize)]
#[serde(rename_all = "snake_case")]
pub enum WalProvider {
#[default]
RaftEngine,
Kafka,
}
#[derive(Parser)]
pub struct Args {
/// The provided configuration file.
/// The example configuration file can be found at `greptimedb/benchmarks/config/wal_bench.example.toml`.
#[clap(long, short = 'c')]
pub cfg_file: String,
/// The wal provider.
#[clap(long, value_enum, default_value_t = WalProvider::default())]
pub wal_provider: WalProvider,
/// The advertised addresses of the kafka brokers.
/// If there're multiple bootstrap brokers, their addresses should be separated by comma, for e.g. "localhost:9092,localhost:9093".
#[clap(long, short = 'b', default_value = "localhost:9092")]
pub bootstrap_brokers: String,
/// The number of workers each running in a dedicated thread.
#[clap(long, default_value_t = num_cpus::get() as u32)]
pub num_workers: u32,
/// The number of kafka topics to be created.
#[clap(long, default_value_t = 32)]
pub num_topics: u32,
/// The number of regions.
#[clap(long, default_value_t = 1000)]
pub num_regions: u32,
/// The number of times each region is scraped.
#[clap(long, default_value_t = 1000)]
pub num_scrapes: u32,
/// The number of rows in each wal entry.
/// Each time a region is scraped, a wal entry containing will be produced.
#[clap(long, default_value_t = 5)]
pub num_rows: u32,
/// The column types of the schema for each region.
/// Currently, three column types are supported:
/// - i = ColumnDataType::Int64
/// - f = ColumnDataType::Float64
/// - s = ColumnDataType::String
/// For e.g., "ifs" will be parsed as three columns: i64, f64, and string.
///
/// Additionally, a "x" sign can be provided to repeat the column types for a given number of times.
/// For e.g., "iix2" will be parsed as 4 columns: i64, i64, i64, and i64.
/// This feature is useful if you want to specify many columns.
#[clap(long, default_value = "ifs")]
pub col_types: String,
/// The maximum size of a batch of kafka records.
/// The default value is 1mb.
#[clap(long, default_value = "512KB")]
pub max_batch_size: ReadableSize,
/// The minimum latency the kafka client issues a batch of kafka records.
/// However, a batch of kafka records would be immediately issued if a record cannot be fit into the batch.
#[clap(long, default_value = "1ms")]
pub linger: String,
/// The initial backoff delay of the kafka consumer.
#[clap(long, default_value = "10ms")]
pub backoff_init: String,
/// The maximum backoff delay of the kafka consumer.
#[clap(long, default_value = "1s")]
pub backoff_max: String,
/// The exponential backoff rate of the kafka consumer. The next back off = base * the current backoff.
#[clap(long, default_value_t = 2)]
pub backoff_base: u32,
/// The deadline of backoff. The backoff ends if the total backoff delay reaches the deadline.
#[clap(long, default_value = "3s")]
pub backoff_deadline: String,
/// The client-side compression algorithm for kafka records.
#[clap(long, default_value = "zstd")]
pub compression: String,
/// The seed of random number generators.
#[clap(long, default_value_t = 42)]
pub rng_seed: u64,
/// Skips the read phase, aka. region replay, if set to true.
#[clap(long, default_value_t = false)]
pub skip_read: bool,
/// Skips the write phase if set to true.
#[clap(long, default_value_t = false)]
pub skip_write: bool,
/// Randomly generates topic names if set to true.
/// Useful when you want to run the benchmarker without worrying about the topics created before.
#[clap(long, default_value_t = false)]
pub random_topics: bool,
/// Logs out the gathered prometheus metrics when the benchmarker ends.
#[clap(long, default_value_t = false)]
pub report_metrics: bool,
}
/// Benchmarker config.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Config {
pub wal_provider: WalProvider,
pub bootstrap_brokers: Vec<String>,
pub num_workers: u32,
pub num_topics: u32,
pub num_regions: u32,
pub num_scrapes: u32,
pub num_rows: u32,
pub col_types: String,
pub max_batch_size: ReadableSize,
#[serde(with = "humantime_serde")]
pub linger: Duration,
#[serde(with = "humantime_serde")]
pub backoff_init: Duration,
#[serde(with = "humantime_serde")]
pub backoff_max: Duration,
pub backoff_base: u32,
#[serde(with = "humantime_serde")]
pub backoff_deadline: Duration,
pub compression: String,
pub rng_seed: u64,
pub skip_read: bool,
pub skip_write: bool,
pub random_topics: bool,
pub report_metrics: bool,
}
impl From<Args> for Config {
fn from(args: Args) -> Self {
let cfg = Self {
wal_provider: args.wal_provider,
bootstrap_brokers: args
.bootstrap_brokers
.split(',')
.map(ToString::to_string)
.collect::<Vec<_>>(),
num_workers: args.num_workers.min(num_cpus::get() as u32),
num_topics: args.num_topics,
num_regions: args.num_regions,
num_scrapes: args.num_scrapes,
num_rows: args.num_rows,
col_types: args.col_types,
max_batch_size: args.max_batch_size,
linger: humantime::parse_duration(&args.linger).unwrap(),
backoff_init: humantime::parse_duration(&args.backoff_init).unwrap(),
backoff_max: humantime::parse_duration(&args.backoff_max).unwrap(),
backoff_base: args.backoff_base,
backoff_deadline: humantime::parse_duration(&args.backoff_deadline).unwrap(),
compression: args.compression,
rng_seed: args.rng_seed,
skip_read: args.skip_read,
skip_write: args.skip_write,
random_topics: args.random_topics,
report_metrics: args.report_metrics,
};
cfg
}
}
/// The region used for wal benchmarker.
pub struct Region {
id: RegionId,
schema: Vec<ColumnSchema>,
wal_options: WalOptions,
next_sequence: AtomicU64,
next_entry_id: AtomicU64,
next_timestamp: AtomicI64,
rng: Mutex<Option<SmallRng>>,
num_rows: u32,
}
impl Region {
/// Creates a new region.
pub fn new(
id: RegionId,
schema: Vec<ColumnSchema>,
wal_options: WalOptions,
num_rows: u32,
rng_seed: u64,
) -> Self {
Self {
id,
schema,
wal_options,
next_sequence: AtomicU64::new(1),
next_entry_id: AtomicU64::new(1),
next_timestamp: AtomicI64::new(1655276557000),
rng: Mutex::new(Some(SmallRng::seed_from_u64(rng_seed))),
num_rows,
}
}
/// Scrapes the region and adds the generated entry to wal.
pub fn add_wal_entry<S: LogStore>(&self, wal_writer: &mut WalWriter<S>) {
let mutation = Mutation {
op_type: OpType::Put as i32,
sequence: self
.next_sequence
.fetch_add(self.num_rows as u64, Ordering::Relaxed),
rows: Some(self.build_rows()),
};
let entry = WalEntry {
mutations: vec![mutation],
};
metrics::METRIC_WAL_WRITE_BYTES_TOTAL.inc_by(Self::entry_estimated_size(&entry) as u64);
wal_writer
.add_entry(
self.id,
self.next_entry_id.fetch_add(1, Ordering::Relaxed),
&entry,
&self.wal_options,
)
.unwrap();
}
/// Replays the region.
pub async fn replay<S: LogStore>(&self, wal: &Arc<Wal<S>>) {
let mut wal_stream = wal.scan(self.id, 0, &self.wal_options).unwrap();
while let Some(res) = wal_stream.next().await {
let (_, entry) = res.unwrap();
metrics::METRIC_WAL_READ_BYTES_TOTAL.inc_by(Self::entry_estimated_size(&entry) as u64);
}
}
/// Computes the estimated size in bytes of the entry.
pub fn entry_estimated_size(entry: &WalEntry) -> usize {
let wrapper_size = size_of::<WalEntry>()
+ entry.mutations.capacity() * size_of::<Mutation>()
+ size_of::<Rows>();
let rows = entry.mutations[0].rows.as_ref().unwrap();
let schema_size = rows.schema.capacity() * size_of::<ColumnSchema>()
+ rows
.schema
.iter()
.map(|s| s.column_name.capacity())
.sum::<usize>();
let values_size = (rows.rows.capacity() * size_of::<Row>())
+ rows
.rows
.iter()
.map(|r| r.values.capacity() * size_of::<Value>())
.sum::<usize>();
wrapper_size + schema_size + values_size
}
fn build_rows(&self) -> Rows {
let cols = self
.schema
.iter()
.map(|col_schema| {
let col_data_type = ColumnDataType::try_from(col_schema.datatype).unwrap();
self.build_col(&col_data_type, self.num_rows)
})
.collect::<Vec<_>>();
let rows = (0..self.num_rows)
.map(|i| {
let values = cols.iter().map(|col| col[i as usize].clone()).collect();
Row { values }
})
.collect();
Rows {
schema: self.schema.clone(),
rows,
}
}
fn build_col(&self, col_data_type: &ColumnDataType, num_rows: u32) -> Vec<Value> {
let mut rng_guard = self.rng.lock().unwrap();
let rng = rng_guard.as_mut().unwrap();
match col_data_type {
ColumnDataType::TimestampMillisecond => (0..num_rows)
.map(|_| {
let ts = self.next_timestamp.fetch_add(1000, Ordering::Relaxed);
Value {
value_data: Some(ValueData::TimestampMillisecondValue(ts)),
}
})
.collect(),
ColumnDataType::Int64 => (0..num_rows)
.map(|_| {
let v = rng.sample(Uniform::new(0, 10_000));
Value {
value_data: Some(ValueData::I64Value(v)),
}
})
.collect(),
ColumnDataType::Float64 => (0..num_rows)
.map(|_| {
let v = rng.sample(Uniform::new(0.0, 5000.0));
Value {
value_data: Some(ValueData::F64Value(v)),
}
})
.collect(),
ColumnDataType::String => (0..num_rows)
.map(|_| {
let v = Alphanumeric.sample_string(rng, 10);
Value {
value_data: Some(ValueData::StringValue(v)),
}
})
.collect(),
_ => unreachable!(),
}
}
}