Files
greptimedb/src/catalog/src/information_schema/tables.rs
Yingwen d0820bb26d refactor: Remove PhysicalPlan trait and use ExecutionPlan directly (#3894)
* refactor: remove PhysicalPlan

* refactor: remove physical_plan mod

* refactor: import

* fix merge error

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

---------

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
Co-authored-by: Ruihang Xia <waynestxia@gmail.com>
2024-05-11 07:38:03 +00:00

252 lines
8.7 KiB
Rust

// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::{Arc, Weak};
use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_TABLES_TABLE_ID;
use common_error::ext::BoxedError;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::execution::TaskContext;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{StringVectorBuilder, UInt32VectorBuilder};
use futures::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use table::metadata::TableType;
use super::TABLES;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::{InformationTable, Predicates};
use crate::CatalogManager;
pub const TABLE_CATALOG: &str = "table_catalog";
pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const TABLE_TYPE: &str = "table_type";
const TABLE_ID: &str = "table_id";
const ENGINE: &str = "engine";
const INIT_CAPACITY: usize = 42;
pub(super) struct InformationSchemaTables {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
}
impl InformationSchemaTables {
pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
Self {
schema: Self::schema(),
catalog_name,
catalog_manager,
}
}
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(TABLE_CATALOG, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_SCHEMA, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_TYPE, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_ID, ConcreteDataType::uint32_datatype(), true),
ColumnSchema::new(ENGINE, ConcreteDataType::string_datatype(), true),
]))
}
fn builder(&self) -> InformationSchemaTablesBuilder {
InformationSchemaTablesBuilder::new(
self.schema.clone(),
self.catalog_name.clone(),
self.catalog_manager.clone(),
)
}
}
impl InformationTable for InformationSchemaTables {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_TABLES_TABLE_ID
}
fn table_name(&self) -> &'static str {
TABLES
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_tables(Some(request))
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
/// Builds the `information_schema.TABLE` table row by row
///
/// Columns are based on <https://www.postgresql.org/docs/current/infoschema-columns.html>
struct InformationSchemaTablesBuilder {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
catalog_names: StringVectorBuilder,
schema_names: StringVectorBuilder,
table_names: StringVectorBuilder,
table_types: StringVectorBuilder,
table_ids: UInt32VectorBuilder,
engines: StringVectorBuilder,
}
impl InformationSchemaTablesBuilder {
fn new(
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
) -> Self {
Self {
schema,
catalog_name,
catalog_manager,
catalog_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
schema_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_types: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_ids: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
engines: StringVectorBuilder::with_capacity(INIT_CAPACITY),
}
}
/// Construct the `information_schema.tables` virtual table
async fn make_tables(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name).await? {
let mut stream = catalog_manager.tables(&catalog_name, &schema_name);
while let Some(table) = stream.try_next().await? {
let table_info = table.table_info();
self.add_table(
&predicates,
&catalog_name,
&schema_name,
&table_info.name,
table.table_type(),
Some(table_info.ident.table_id),
Some(&table_info.meta.engine),
);
}
}
self.finish()
}
#[allow(clippy::too_many_arguments)]
fn add_table(
&mut self,
predicates: &Predicates,
catalog_name: &str,
schema_name: &str,
table_name: &str,
table_type: TableType,
table_id: Option<u32>,
engine: Option<&str>,
) {
let table_type = match table_type {
TableType::Base => "BASE TABLE",
TableType::View => "VIEW",
TableType::Temporary => "LOCAL TEMPORARY",
};
let row = [
(TABLE_CATALOG, &Value::from(catalog_name)),
(TABLE_SCHEMA, &Value::from(schema_name)),
(TABLE_NAME, &Value::from(table_name)),
(TABLE_TYPE, &Value::from(table_type)),
];
if !predicates.eval(&row) {
return;
}
self.catalog_names.push(Some(catalog_name));
self.schema_names.push(Some(schema_name));
self.table_names.push(Some(table_name));
self.table_types.push(Some(table_type));
self.table_ids.push(table_id);
self.engines.push(engine);
}
fn finish(&mut self) -> Result<RecordBatch> {
let columns: Vec<VectorRef> = vec![
Arc::new(self.catalog_names.finish()),
Arc::new(self.schema_names.finish()),
Arc::new(self.table_names.finish()),
Arc::new(self.table_types.finish()),
Arc::new(self.table_ids.finish()),
Arc::new(self.engines.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}
}
impl DfPartitionStream for InformationSchemaTables {
fn schema(&self) -> &ArrowSchemaRef {
self.schema.arrow_schema()
}
fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_tables(None)
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
))
}
}