Files
greptimedb/src/mito2/src/flush.rs
Lei, HUANG dba6da4d00 refactor(mito): Allow creating multiple files in ParquetWriter (#5291)
* - **Refactored SST File Handling**:
   - Introduced `FilePathProvider` trait and its implementations (`WriteCachePathProvider`, `RegionFilePathFactory`) to manage SST and index file paths.
   - Updated `AccessLayer`, `WriteCache`, and `ParquetWriter` to use `FilePathProvider` for path management.
   - Modified `SstWriteRequest` and `SstUploadRequest` to use path providers instead of direct paths.
   - Files affected: `access_layer.rs`, `write_cache.rs`, `parquet.rs`, `writer.rs`.

 - **Enhanced Indexer Management**:
   - Replaced `IndexerBuilder` with `IndexerBuilderImpl` and made it async to support dynamic indexer creation.
   - Updated `ParquetWriter` to handle multiple indexers and file IDs.
   - Files affected: `index.rs`, `parquet.rs`, `writer.rs`.

 - **Removed Redundant File ID Handling**:
   - Removed `file_id` from `SstWriteRequest` and `CompactionOutput`.
   - Updated related logic to dynamically generate file IDs where necessary.
   - Files affected: `compaction.rs`, `flush.rs`, `picker.rs`, `twcs.rs`, `window.rs`.

 - **Test Adjustments**:
   - Updated tests to align with new path and indexer management.
   - Introduced `FixedPathProvider` and `NoopIndexBuilder` for testing purposes.
   - Files affected: `sst_util.rs`, `version_util.rs`, `parquet.rs`.

* chore: merge main

* refactor/generate-file-id-in-parquet-writer:
 **Enhance Logging in Compactor**

 - Updated `compactor.rs` to improve logging of compaction process.
   - Added `itertools::Itertools` for efficient string joining.
   - Moved logging of compaction inputs and outputs to the async block for better context.
   - Enhanced log message to include both input and output file names for better traceability.
2025-02-05 09:00:54 +00:00

949 lines
34 KiB
Rust

// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Flush related utilities and structs.
use std::collections::HashMap;
use std::num::NonZeroU64;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use common_telemetry::{debug, error, info, trace};
use snafu::ResultExt;
use store_api::storage::RegionId;
use strum::IntoStaticStr;
use tokio::sync::{mpsc, watch};
use crate::access_layer::{AccessLayerRef, OperationType, SstWriteRequest};
use crate::cache::CacheManagerRef;
use crate::config::MitoConfig;
use crate::error::{
Error, FlushRegionSnafu, RegionClosedSnafu, RegionDroppedSnafu, RegionTruncatedSnafu, Result,
};
use crate::manifest::action::{RegionEdit, RegionMetaAction, RegionMetaActionList};
use crate::metrics::{
FLUSH_BYTES_TOTAL, FLUSH_ELAPSED, FLUSH_ERRORS_TOTAL, FLUSH_REQUESTS_TOTAL,
INFLIGHT_FLUSH_COUNT,
};
use crate::read::Source;
use crate::region::options::IndexOptions;
use crate::region::version::{VersionControlData, VersionControlRef};
use crate::region::{ManifestContextRef, RegionLeaderState};
use crate::request::{
BackgroundNotify, FlushFailed, FlushFinished, OptionOutputTx, OutputTx, SenderDdlRequest,
SenderWriteRequest, WorkerRequest,
};
use crate::schedule::scheduler::{Job, SchedulerRef};
use crate::sst::file::FileMeta;
use crate::sst::parquet::WriteOptions;
use crate::worker::WorkerListener;
/// Global write buffer (memtable) manager.
///
/// Tracks write buffer (memtable) usages and decide whether the engine needs to flush.
pub trait WriteBufferManager: Send + Sync + std::fmt::Debug {
/// Returns whether to trigger the engine.
fn should_flush_engine(&self) -> bool;
/// Returns whether to stall write requests.
fn should_stall(&self) -> bool;
/// Reserves `mem` bytes.
fn reserve_mem(&self, mem: usize);
/// Tells the manager we are freeing `mem` bytes.
///
/// We are in the process of freeing `mem` bytes, so it is not considered
/// when checking the soft limit.
fn schedule_free_mem(&self, mem: usize);
/// We have freed `mem` bytes.
fn free_mem(&self, mem: usize);
/// Returns the total memory used by memtables.
fn memory_usage(&self) -> usize;
}
pub type WriteBufferManagerRef = Arc<dyn WriteBufferManager>;
/// Default [WriteBufferManager] implementation.
///
/// Inspired by RocksDB's WriteBufferManager.
/// <https://github.com/facebook/rocksdb/blob/main/include/rocksdb/write_buffer_manager.h>
#[derive(Debug)]
pub struct WriteBufferManagerImpl {
/// Write buffer size for the engine.
global_write_buffer_size: usize,
/// Mutable memtable memory size limit.
mutable_limit: usize,
/// Memory in used (e.g. used by mutable and immutable memtables).
memory_used: AtomicUsize,
/// Memory that hasn't been scheduled to free (e.g. used by mutable memtables).
memory_active: AtomicUsize,
/// Optional notifier.
/// The manager can wake up the worker once we free the write buffer.
notifier: Option<watch::Sender<()>>,
}
impl WriteBufferManagerImpl {
/// Returns a new manager with specific `global_write_buffer_size`.
pub fn new(global_write_buffer_size: usize) -> Self {
Self {
global_write_buffer_size,
mutable_limit: Self::get_mutable_limit(global_write_buffer_size),
memory_used: AtomicUsize::new(0),
memory_active: AtomicUsize::new(0),
notifier: None,
}
}
/// Attaches a notifier to the manager.
pub fn with_notifier(mut self, notifier: watch::Sender<()>) -> Self {
self.notifier = Some(notifier);
self
}
/// Returns memory usage of mutable memtables.
pub fn mutable_usage(&self) -> usize {
self.memory_active.load(Ordering::Relaxed)
}
/// Returns the size limit for mutable memtables.
fn get_mutable_limit(global_write_buffer_size: usize) -> usize {
// Reserves half of the write buffer for mutable memtable.
global_write_buffer_size / 2
}
}
impl WriteBufferManager for WriteBufferManagerImpl {
fn should_flush_engine(&self) -> bool {
let mutable_memtable_memory_usage = self.memory_active.load(Ordering::Relaxed);
if mutable_memtable_memory_usage > self.mutable_limit {
debug!(
"Engine should flush (over mutable limit), mutable_usage: {}, memory_usage: {}, mutable_limit: {}, global_limit: {}",
mutable_memtable_memory_usage, self.memory_usage(), self.mutable_limit, self.global_write_buffer_size,
);
return true;
}
let memory_usage = self.memory_used.load(Ordering::Relaxed);
// If the memory exceeds the buffer size, we trigger more aggressive
// flush. But if already more than half memory is being flushed,
// triggering more flush may not help. We will hold it instead.
if memory_usage >= self.global_write_buffer_size {
if mutable_memtable_memory_usage >= self.global_write_buffer_size / 2 {
debug!(
"Engine should flush (over total limit), memory_usage: {}, global_write_buffer_size: {}, \
mutable_usage: {}.",
memory_usage,
self.global_write_buffer_size,
mutable_memtable_memory_usage);
return true;
} else {
trace!(
"Engine won't flush, memory_usage: {}, global_write_buffer_size: {}, mutable_usage: {}.",
memory_usage,
self.global_write_buffer_size,
mutable_memtable_memory_usage);
}
}
false
}
fn should_stall(&self) -> bool {
self.memory_usage() >= self.global_write_buffer_size
}
fn reserve_mem(&self, mem: usize) {
self.memory_used.fetch_add(mem, Ordering::Relaxed);
self.memory_active.fetch_add(mem, Ordering::Relaxed);
}
fn schedule_free_mem(&self, mem: usize) {
self.memory_active.fetch_sub(mem, Ordering::Relaxed);
}
fn free_mem(&self, mem: usize) {
self.memory_used.fetch_sub(mem, Ordering::Relaxed);
if let Some(notifier) = &self.notifier {
// Notifies the worker after the memory usage is decreased. When we drop the memtable
// outside of the worker, the worker may still stall requests because the memory usage
// is not updated. So we need to notify the worker to handle stalled requests again.
let _ = notifier.send(());
}
}
fn memory_usage(&self) -> usize {
self.memory_used.load(Ordering::Relaxed)
}
}
/// Reason of a flush task.
#[derive(Debug, IntoStaticStr)]
pub enum FlushReason {
/// Other reasons.
Others,
/// Engine reaches flush threshold.
EngineFull,
/// Manual flush.
Manual,
/// Flush to alter table.
Alter,
/// Flush periodically.
Periodically,
/// Flush memtable during downgrading state.
Downgrading,
}
impl FlushReason {
/// Get flush reason as static str.
fn as_str(&self) -> &'static str {
self.into()
}
}
/// Task to flush a region.
pub(crate) struct RegionFlushTask {
/// Region to flush.
pub(crate) region_id: RegionId,
/// Reason to flush.
pub(crate) reason: FlushReason,
/// Flush result senders.
pub(crate) senders: Vec<OutputTx>,
/// Request sender to notify the worker.
pub(crate) request_sender: mpsc::Sender<WorkerRequest>,
pub(crate) access_layer: AccessLayerRef,
pub(crate) listener: WorkerListener,
pub(crate) engine_config: Arc<MitoConfig>,
pub(crate) row_group_size: Option<usize>,
pub(crate) cache_manager: CacheManagerRef,
pub(crate) manifest_ctx: ManifestContextRef,
/// Index options for the region.
pub(crate) index_options: IndexOptions,
}
impl RegionFlushTask {
/// Push the sender if it is not none.
pub(crate) fn push_sender(&mut self, mut sender: OptionOutputTx) {
if let Some(sender) = sender.take_inner() {
self.senders.push(sender);
}
}
/// Consumes the task and notify the sender the job is success.
fn on_success(self) {
for sender in self.senders {
sender.send(Ok(0));
}
}
/// Send flush error to waiter.
fn on_failure(&mut self, err: Arc<Error>) {
for sender in self.senders.drain(..) {
sender.send(Err(err.clone()).context(FlushRegionSnafu {
region_id: self.region_id,
}));
}
}
/// Converts the flush task into a background job.
///
/// We must call this in the region worker.
fn into_flush_job(mut self, version_control: &VersionControlRef) -> Job {
// Get a version of this region before creating a job to get current
// wal entry id, sequence and immutable memtables.
let version_data = version_control.current();
Box::pin(async move {
INFLIGHT_FLUSH_COUNT.inc();
self.do_flush(version_data).await;
INFLIGHT_FLUSH_COUNT.dec();
})
}
/// Runs the flush task.
async fn do_flush(&mut self, version_data: VersionControlData) {
let timer = FLUSH_ELAPSED.with_label_values(&["total"]).start_timer();
self.listener.on_flush_begin(self.region_id).await;
let worker_request = match self.flush_memtables(&version_data).await {
Ok(edit) => {
let memtables_to_remove = version_data
.version
.memtables
.immutables()
.iter()
.map(|m| m.id())
.collect();
let flush_finished = FlushFinished {
region_id: self.region_id,
// The last entry has been flushed.
flushed_entry_id: version_data.last_entry_id,
senders: std::mem::take(&mut self.senders),
_timer: timer,
edit,
memtables_to_remove,
};
WorkerRequest::Background {
region_id: self.region_id,
notify: BackgroundNotify::FlushFinished(flush_finished),
}
}
Err(e) => {
error!(e; "Failed to flush region {}", self.region_id);
// Discard the timer.
timer.stop_and_discard();
let err = Arc::new(e);
self.on_failure(err.clone());
WorkerRequest::Background {
region_id: self.region_id,
notify: BackgroundNotify::FlushFailed(FlushFailed { err }),
}
}
};
self.send_worker_request(worker_request).await;
}
/// Flushes memtables to level 0 SSTs and updates the manifest.
/// Returns the [RegionEdit] to apply.
async fn flush_memtables(&self, version_data: &VersionControlData) -> Result<RegionEdit> {
// We must use the immutable memtables list and entry ids from the `version_data`
// for consistency as others might already modify the version in the `version_control`.
let version = &version_data.version;
let timer = FLUSH_ELAPSED
.with_label_values(&["flush_memtables"])
.start_timer();
let mut write_opts = WriteOptions {
write_buffer_size: self.engine_config.sst_write_buffer_size,
..Default::default()
};
if let Some(row_group_size) = self.row_group_size {
write_opts.row_group_size = row_group_size;
}
let memtables = version.memtables.immutables();
let mut file_metas = Vec::with_capacity(memtables.len());
let mut flushed_bytes = 0;
for mem in memtables {
if mem.is_empty() {
// Skip empty memtables.
continue;
}
let max_sequence = mem.stats().max_sequence();
let iter = mem.iter(None, None, None)?;
let source = Source::Iter(iter);
// Flush to level 0.
let write_request = SstWriteRequest {
op_type: OperationType::Flush,
metadata: version.metadata.clone(),
source,
cache_manager: self.cache_manager.clone(),
storage: version.options.storage.clone(),
max_sequence: Some(max_sequence),
index_options: self.index_options.clone(),
inverted_index_config: self.engine_config.inverted_index.clone(),
fulltext_index_config: self.engine_config.fulltext_index.clone(),
bloom_filter_index_config: self.engine_config.bloom_filter_index.clone(),
};
let ssts_written = self
.access_layer
.write_sst(write_request, &write_opts)
.await?;
if ssts_written.is_empty() {
// No data written.
continue;
}
file_metas.extend(ssts_written.into_iter().map(|sst_info| {
flushed_bytes += sst_info.file_size;
FileMeta {
region_id: self.region_id,
file_id: sst_info.file_id,
time_range: sst_info.time_range,
level: 0,
file_size: sst_info.file_size,
available_indexes: sst_info.index_metadata.build_available_indexes(),
index_file_size: sst_info.index_metadata.file_size,
num_rows: sst_info.num_rows as u64,
num_row_groups: sst_info.num_row_groups,
sequence: NonZeroU64::new(max_sequence),
}
}));
}
if !file_metas.is_empty() {
FLUSH_BYTES_TOTAL.inc_by(flushed_bytes);
}
let file_ids: Vec<_> = file_metas.iter().map(|f| f.file_id).collect();
info!(
"Successfully flush memtables, region: {}, reason: {}, files: {:?}, cost: {:?}s",
self.region_id,
self.reason.as_str(),
file_ids,
timer.stop_and_record(),
);
let edit = RegionEdit {
files_to_add: file_metas,
files_to_remove: Vec::new(),
compaction_time_window: None,
// The last entry has been flushed.
flushed_entry_id: Some(version_data.last_entry_id),
flushed_sequence: Some(version_data.committed_sequence),
};
info!("Applying {edit:?} to region {}", self.region_id);
let action_list = RegionMetaActionList::with_action(RegionMetaAction::Edit(edit.clone()));
let expected_state = if matches!(self.reason, FlushReason::Downgrading) {
RegionLeaderState::Downgrading
} else {
RegionLeaderState::Writable
};
// We will leak files if the manifest update fails, but we ignore them for simplicity. We can
// add a cleanup job to remove them later.
let version = self
.manifest_ctx
.update_manifest(expected_state, action_list)
.await?;
info!(
"Successfully update manifest version to {version}, region: {}, reason: {}",
self.region_id,
self.reason.as_str()
);
Ok(edit)
}
/// Notify flush job status.
async fn send_worker_request(&self, request: WorkerRequest) {
if let Err(e) = self.request_sender.send(request).await {
error!(
"Failed to notify flush job status for region {}, request: {:?}",
self.region_id, e.0
);
}
}
/// Merge two flush tasks.
fn merge(&mut self, mut other: RegionFlushTask) {
assert_eq!(self.region_id, other.region_id);
// Now we only merge senders. They share the same flush reason.
self.senders.append(&mut other.senders);
}
}
/// Manages background flushes of a worker.
pub(crate) struct FlushScheduler {
/// Tracks regions need to flush.
region_status: HashMap<RegionId, FlushStatus>,
/// Background job scheduler.
scheduler: SchedulerRef,
}
impl FlushScheduler {
/// Creates a new flush scheduler.
pub(crate) fn new(scheduler: SchedulerRef) -> FlushScheduler {
FlushScheduler {
region_status: HashMap::new(),
scheduler,
}
}
/// Returns true if the region already requested flush.
pub(crate) fn is_flush_requested(&self, region_id: RegionId) -> bool {
self.region_status.contains_key(&region_id)
}
/// Schedules a flush `task` for specific `region`.
pub(crate) fn schedule_flush(
&mut self,
region_id: RegionId,
version_control: &VersionControlRef,
task: RegionFlushTask,
) -> Result<()> {
debug_assert_eq!(region_id, task.region_id);
let version = version_control.current().version;
if version.memtables.is_empty() {
debug_assert!(!self.region_status.contains_key(&region_id));
// The region has nothing to flush.
task.on_success();
return Ok(());
}
// Don't increase the counter if a region has nothing to flush.
FLUSH_REQUESTS_TOTAL
.with_label_values(&[task.reason.as_str()])
.inc();
// Add this region to status map.
let flush_status = self
.region_status
.entry(region_id)
.or_insert_with(|| FlushStatus::new(region_id, version_control.clone()));
// Checks whether we can flush the region now.
if flush_status.flushing {
// There is already a flush job running.
flush_status.merge_task(task);
return Ok(());
}
// TODO(yingwen): We can merge with pending and execute directly.
// If there are pending tasks, then we should push it to pending list.
if flush_status.pending_task.is_some() {
flush_status.merge_task(task);
return Ok(());
}
// Now we can flush the region directly.
if let Err(e) = version_control.freeze_mutable() {
error!(e; "Failed to freeze the mutable memtable for region {}", region_id);
// Remove from region status if we can't freeze the mutable memtable.
self.region_status.remove(&region_id);
return Err(e);
}
// Submit a flush job.
let job = task.into_flush_job(version_control);
if let Err(e) = self.scheduler.schedule(job) {
// If scheduler returns error, senders in the job will be dropped and waiters
// can get recv errors.
error!(e; "Failed to schedule flush job for region {}", region_id);
// Remove from region status if we can't submit the task.
self.region_status.remove(&region_id);
return Err(e);
}
flush_status.flushing = true;
Ok(())
}
/// Notifies the scheduler that the flush job is finished.
///
/// Returns all pending requests if the region doesn't need to flush again.
pub(crate) fn on_flush_success(
&mut self,
region_id: RegionId,
) -> Option<(Vec<SenderDdlRequest>, Vec<SenderWriteRequest>)> {
let flush_status = self.region_status.get_mut(&region_id)?;
// This region doesn't have running flush job.
flush_status.flushing = false;
let pending_requests = if flush_status.pending_task.is_none() {
// The region doesn't have any pending flush task.
// Safety: The flush status must exist.
let flush_status = self.region_status.remove(&region_id).unwrap();
Some((flush_status.pending_ddls, flush_status.pending_writes))
} else {
let version_data = flush_status.version_control.current();
if version_data.version.memtables.is_empty() {
// The region has nothing to flush, we also need to remove it from the status.
// Safety: The pending task is not None.
let task = flush_status.pending_task.take().unwrap();
// The region has nothing to flush. We can notify pending task.
task.on_success();
// `schedule_next_flush()` may pick up the same region to flush, so we must remove
// it from the status to avoid leaking pending requests.
// Safety: The flush status must exist.
let flush_status = self.region_status.remove(&region_id).unwrap();
Some((flush_status.pending_ddls, flush_status.pending_writes))
} else {
// We can flush the region again, keep it in the region status.
None
}
};
// Schedule next flush job.
if let Err(e) = self.schedule_next_flush() {
error!(e; "Flush of region {} is successful, but failed to schedule next flush", region_id);
}
pending_requests
}
/// Notifies the scheduler that the flush job is failed.
pub(crate) fn on_flush_failed(&mut self, region_id: RegionId, err: Arc<Error>) {
error!(err; "Region {} failed to flush, cancel all pending tasks", region_id);
FLUSH_ERRORS_TOTAL.inc();
// Remove this region.
let Some(flush_status) = self.region_status.remove(&region_id) else {
return;
};
// Fast fail: cancels all pending tasks and sends error to their waiters.
flush_status.on_failure(err);
// Still tries to schedule a new flush.
if let Err(e) = self.schedule_next_flush() {
error!(e; "Failed to schedule next flush after region {} flush is failed", region_id);
}
}
/// Notifies the scheduler that the region is dropped.
pub(crate) fn on_region_dropped(&mut self, region_id: RegionId) {
self.remove_region_on_failure(
region_id,
Arc::new(RegionDroppedSnafu { region_id }.build()),
);
}
/// Notifies the scheduler that the region is closed.
pub(crate) fn on_region_closed(&mut self, region_id: RegionId) {
self.remove_region_on_failure(region_id, Arc::new(RegionClosedSnafu { region_id }.build()));
}
/// Notifies the scheduler that the region is truncated.
pub(crate) fn on_region_truncated(&mut self, region_id: RegionId) {
self.remove_region_on_failure(
region_id,
Arc::new(RegionTruncatedSnafu { region_id }.build()),
);
}
fn remove_region_on_failure(&mut self, region_id: RegionId, err: Arc<Error>) {
// Remove this region.
let Some(flush_status) = self.region_status.remove(&region_id) else {
return;
};
// Notifies all pending tasks.
flush_status.on_failure(err);
}
/// Add ddl request to pending queue.
///
/// # Panics
/// Panics if region didn't request flush.
pub(crate) fn add_ddl_request_to_pending(&mut self, request: SenderDdlRequest) {
let status = self.region_status.get_mut(&request.region_id).unwrap();
status.pending_ddls.push(request);
}
/// Add write request to pending queue.
///
/// # Panics
/// Panics if region didn't request flush.
pub(crate) fn add_write_request_to_pending(&mut self, request: SenderWriteRequest) {
let status = self
.region_status
.get_mut(&request.request.region_id)
.unwrap();
status.pending_writes.push(request);
}
/// Returns true if the region has pending DDLs.
pub(crate) fn has_pending_ddls(&self, region_id: RegionId) -> bool {
self.region_status
.get(&region_id)
.map(|status| !status.pending_ddls.is_empty())
.unwrap_or(false)
}
/// Schedules a new flush task when the scheduler can submit next task.
pub(crate) fn schedule_next_flush(&mut self) -> Result<()> {
debug_assert!(self
.region_status
.values()
.all(|status| status.flushing || status.pending_task.is_some()));
// Get the first region from status map.
let Some(flush_status) = self
.region_status
.values_mut()
.find(|status| status.pending_task.is_some())
else {
return Ok(());
};
debug_assert!(!flush_status.flushing);
let task = flush_status.pending_task.take().unwrap();
let region_id = flush_status.region_id;
let version_control = flush_status.version_control.clone();
self.schedule_flush(region_id, &version_control, task)
}
}
impl Drop for FlushScheduler {
fn drop(&mut self) {
for (region_id, flush_status) in self.region_status.drain() {
// We are shutting down so notify all pending tasks.
flush_status.on_failure(Arc::new(RegionClosedSnafu { region_id }.build()));
}
}
}
/// Flush status of a region scheduled by the [FlushScheduler].
///
/// Tracks running and pending flush tasks and all pending requests of a region.
struct FlushStatus {
/// Current region.
region_id: RegionId,
/// Version control of the region.
version_control: VersionControlRef,
/// There is a flush task running.
///
/// It is possible that a region is not flushing but has pending task if the scheduler
/// doesn't schedules this region.
flushing: bool,
/// Task waiting for next flush.
pending_task: Option<RegionFlushTask>,
/// Pending ddl requests.
pending_ddls: Vec<SenderDdlRequest>,
/// Requests waiting to write after altering the region.
pending_writes: Vec<SenderWriteRequest>,
}
impl FlushStatus {
fn new(region_id: RegionId, version_control: VersionControlRef) -> FlushStatus {
FlushStatus {
region_id,
version_control,
flushing: false,
pending_task: None,
pending_ddls: Vec::new(),
pending_writes: Vec::new(),
}
}
/// Merges the task to pending task.
fn merge_task(&mut self, task: RegionFlushTask) {
if let Some(pending) = &mut self.pending_task {
pending.merge(task);
} else {
self.pending_task = Some(task);
}
}
fn on_failure(self, err: Arc<Error>) {
if let Some(mut task) = self.pending_task {
task.on_failure(err.clone());
}
for ddl in self.pending_ddls {
ddl.sender.send(Err(err.clone()).context(FlushRegionSnafu {
region_id: self.region_id,
}));
}
for write_req in self.pending_writes {
write_req
.sender
.send(Err(err.clone()).context(FlushRegionSnafu {
region_id: self.region_id,
}));
}
}
}
#[cfg(test)]
mod tests {
use tokio::sync::oneshot;
use super::*;
use crate::cache::CacheManager;
use crate::memtable::time_series::TimeSeriesMemtableBuilder;
use crate::test_util::scheduler_util::{SchedulerEnv, VecScheduler};
use crate::test_util::version_util::{write_rows_to_version, VersionControlBuilder};
#[test]
fn test_get_mutable_limit() {
assert_eq!(4, WriteBufferManagerImpl::get_mutable_limit(8));
assert_eq!(5, WriteBufferManagerImpl::get_mutable_limit(10));
assert_eq!(32, WriteBufferManagerImpl::get_mutable_limit(64));
assert_eq!(0, WriteBufferManagerImpl::get_mutable_limit(0));
}
#[test]
fn test_over_mutable_limit() {
// Mutable limit is 500.
let manager = WriteBufferManagerImpl::new(1000);
manager.reserve_mem(400);
assert!(!manager.should_flush_engine());
assert!(!manager.should_stall());
// More than mutable limit.
manager.reserve_mem(400);
assert!(manager.should_flush_engine());
// Freezes mutable.
manager.schedule_free_mem(400);
assert!(!manager.should_flush_engine());
assert_eq!(800, manager.memory_used.load(Ordering::Relaxed));
assert_eq!(400, manager.memory_active.load(Ordering::Relaxed));
// Releases immutable.
manager.free_mem(400);
assert_eq!(400, manager.memory_used.load(Ordering::Relaxed));
assert_eq!(400, manager.memory_active.load(Ordering::Relaxed));
}
#[test]
fn test_over_global() {
// Mutable limit is 500.
let manager = WriteBufferManagerImpl::new(1000);
manager.reserve_mem(1100);
assert!(manager.should_stall());
// Global usage is still 1100.
manager.schedule_free_mem(200);
assert!(manager.should_flush_engine());
// More than global limit, but mutable (1100-200-450=450) is not enough (< 500).
manager.schedule_free_mem(450);
assert!(!manager.should_flush_engine());
// Now mutable is enough.
manager.reserve_mem(50);
assert!(manager.should_flush_engine());
manager.reserve_mem(100);
assert!(manager.should_flush_engine());
}
#[test]
fn test_manager_notify() {
let (sender, receiver) = watch::channel(());
let manager = WriteBufferManagerImpl::new(1000).with_notifier(sender);
manager.reserve_mem(500);
assert!(!receiver.has_changed().unwrap());
manager.schedule_free_mem(500);
assert!(!receiver.has_changed().unwrap());
manager.free_mem(500);
assert!(receiver.has_changed().unwrap());
}
#[tokio::test]
async fn test_schedule_empty() {
let env = SchedulerEnv::new().await;
let (tx, _rx) = mpsc::channel(4);
let mut scheduler = env.mock_flush_scheduler();
let builder = VersionControlBuilder::new();
let version_control = Arc::new(builder.build());
let (output_tx, output_rx) = oneshot::channel();
let mut task = RegionFlushTask {
region_id: builder.region_id(),
reason: FlushReason::Others,
senders: Vec::new(),
request_sender: tx,
access_layer: env.access_layer.clone(),
listener: WorkerListener::default(),
engine_config: Arc::new(MitoConfig::default()),
row_group_size: None,
cache_manager: Arc::new(CacheManager::default()),
manifest_ctx: env
.mock_manifest_context(version_control.current().version.metadata.clone())
.await,
index_options: IndexOptions::default(),
};
task.push_sender(OptionOutputTx::from(output_tx));
scheduler
.schedule_flush(builder.region_id(), &version_control, task)
.unwrap();
assert!(scheduler.region_status.is_empty());
let output = output_rx.await.unwrap().unwrap();
assert_eq!(output, 0);
assert!(scheduler.region_status.is_empty());
}
#[tokio::test]
async fn test_schedule_pending_request() {
let job_scheduler = Arc::new(VecScheduler::default());
let env = SchedulerEnv::new().await.scheduler(job_scheduler.clone());
let (tx, _rx) = mpsc::channel(4);
let mut scheduler = env.mock_flush_scheduler();
let mut builder = VersionControlBuilder::new();
// Overwrites the empty memtable builder.
builder.set_memtable_builder(Arc::new(TimeSeriesMemtableBuilder::default()));
let version_control = Arc::new(builder.build());
// Writes data to the memtable so it is not empty.
let version_data = version_control.current();
write_rows_to_version(&version_data.version, "host0", 0, 10);
let manifest_ctx = env
.mock_manifest_context(version_data.version.metadata.clone())
.await;
// Creates 3 tasks.
let mut tasks: Vec<_> = (0..3)
.map(|_| RegionFlushTask {
region_id: builder.region_id(),
reason: FlushReason::Others,
senders: Vec::new(),
request_sender: tx.clone(),
access_layer: env.access_layer.clone(),
listener: WorkerListener::default(),
engine_config: Arc::new(MitoConfig::default()),
row_group_size: None,
cache_manager: Arc::new(CacheManager::default()),
manifest_ctx: manifest_ctx.clone(),
index_options: IndexOptions::default(),
})
.collect();
// Schedule first task.
let task = tasks.pop().unwrap();
scheduler
.schedule_flush(builder.region_id(), &version_control, task)
.unwrap();
// Should schedule 1 flush.
assert_eq!(1, scheduler.region_status.len());
assert_eq!(1, job_scheduler.num_jobs());
// Check the new version.
let version_data = version_control.current();
assert_eq!(0, version_data.version.memtables.immutables()[0].id());
// Schedule remaining tasks.
let output_rxs: Vec<_> = tasks
.into_iter()
.map(|mut task| {
let (output_tx, output_rx) = oneshot::channel();
task.push_sender(OptionOutputTx::from(output_tx));
scheduler
.schedule_flush(builder.region_id(), &version_control, task)
.unwrap();
output_rx
})
.collect();
// Assumes the flush job is finished.
version_control.apply_edit(
RegionEdit {
files_to_add: Vec::new(),
files_to_remove: Vec::new(),
compaction_time_window: None,
flushed_entry_id: None,
flushed_sequence: None,
},
&[0],
builder.file_purger(),
);
scheduler.on_flush_success(builder.region_id());
// No new flush task.
assert_eq!(1, job_scheduler.num_jobs());
// The flush status is cleared.
assert!(scheduler.region_status.is_empty());
for output_rx in output_rxs {
let output = output_rx.await.unwrap().unwrap();
assert_eq!(output, 0);
}
}
}