mirror of
https://github.com/GreptimeTeam/greptimedb.git
synced 2026-01-14 01:02:55 +00:00
* fix: conn timeout&refactor: better err msg * chore: clippy * chore: make test work * chore: comment * todo: fix null cast * fix: retry conn&udd_calc * chore: comment * chore: apply suggestion --------- Co-authored-by: dennis zhuang <killme2008@gmail.com>
596 lines
22 KiB
Rust
596 lines
22 KiB
Rust
// Copyright 2023 Greptime Team
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
//! Datafusion optimizer for flow plan
|
|
|
|
#![warn(unused)]
|
|
|
|
use std::collections::{HashMap, HashSet};
|
|
use std::sync::Arc;
|
|
|
|
use common_error::ext::BoxedError;
|
|
use common_telemetry::debug;
|
|
use datafusion::config::ConfigOptions;
|
|
use datafusion::error::DataFusionError;
|
|
use datafusion::functions_aggregate::count::count_udaf;
|
|
use datafusion::functions_aggregate::sum::sum_udaf;
|
|
use datafusion::optimizer::analyzer::type_coercion::TypeCoercion;
|
|
use datafusion::optimizer::common_subexpr_eliminate::CommonSubexprEliminate;
|
|
use datafusion::optimizer::optimize_projections::OptimizeProjections;
|
|
use datafusion::optimizer::simplify_expressions::SimplifyExpressions;
|
|
use datafusion::optimizer::unwrap_cast_in_comparison::UnwrapCastInComparison;
|
|
use datafusion::optimizer::utils::NamePreserver;
|
|
use datafusion::optimizer::{Analyzer, AnalyzerRule, Optimizer, OptimizerContext};
|
|
use datafusion_common::tree_node::{
|
|
Transformed, TreeNode, TreeNodeRecursion, TreeNodeRewriter, TreeNodeVisitor,
|
|
};
|
|
use datafusion_common::{Column, DFSchema, ScalarValue};
|
|
use datafusion_expr::utils::merge_schema;
|
|
use datafusion_expr::{
|
|
BinaryExpr, ColumnarValue, Expr, Operator, Projection, ScalarFunctionArgs, ScalarUDFImpl,
|
|
Signature, TypeSignature, Volatility,
|
|
};
|
|
use query::optimizer::count_wildcard::CountWildcardToTimeIndexRule;
|
|
use query::parser::QueryLanguageParser;
|
|
use query::query_engine::DefaultSerializer;
|
|
use query::QueryEngine;
|
|
use snafu::ResultExt;
|
|
/// note here we are using the `substrait_proto_df` crate from the `substrait` module and
|
|
/// rename it to `substrait_proto`
|
|
use substrait::DFLogicalSubstraitConvertor;
|
|
|
|
use crate::adapter::FlownodeContext;
|
|
use crate::error::{DatafusionSnafu, Error, ExternalSnafu, UnexpectedSnafu};
|
|
use crate::expr::{TUMBLE_END, TUMBLE_START};
|
|
use crate::plan::TypedPlan;
|
|
|
|
// TODO(discord9): use `Analyzer` to manage rules if more `AnalyzerRule` is needed
|
|
pub async fn apply_df_optimizer(
|
|
plan: datafusion_expr::LogicalPlan,
|
|
) -> Result<datafusion_expr::LogicalPlan, Error> {
|
|
let cfg = ConfigOptions::new();
|
|
let analyzer = Analyzer::with_rules(vec![
|
|
Arc::new(CountWildcardToTimeIndexRule),
|
|
Arc::new(AvgExpandRule),
|
|
Arc::new(TumbleExpandRule),
|
|
Arc::new(CheckGroupByRule::new()),
|
|
Arc::new(TypeCoercion::new()),
|
|
]);
|
|
let plan = analyzer
|
|
.execute_and_check(plan, &cfg, |p, r| {
|
|
debug!("After apply rule {}, get plan: \n{:?}", r.name(), p);
|
|
})
|
|
.context(DatafusionSnafu {
|
|
context: "Fail to apply analyzer",
|
|
})?;
|
|
|
|
let ctx = OptimizerContext::new();
|
|
let optimizer = Optimizer::with_rules(vec![
|
|
Arc::new(OptimizeProjections::new()),
|
|
Arc::new(CommonSubexprEliminate::new()),
|
|
Arc::new(SimplifyExpressions::new()),
|
|
Arc::new(UnwrapCastInComparison::new()),
|
|
]);
|
|
let plan = optimizer
|
|
.optimize(plan, &ctx, |_, _| {})
|
|
.context(DatafusionSnafu {
|
|
context: "Fail to apply optimizer",
|
|
})?;
|
|
|
|
Ok(plan)
|
|
}
|
|
|
|
/// To reuse existing code for parse sql, the sql is first parsed into a datafusion logical plan,
|
|
/// then to a substrait plan, and finally to a flow plan.
|
|
pub async fn sql_to_flow_plan(
|
|
ctx: &mut FlownodeContext,
|
|
engine: &Arc<dyn QueryEngine>,
|
|
sql: &str,
|
|
) -> Result<TypedPlan, Error> {
|
|
let query_ctx = ctx.query_context.clone().ok_or_else(|| {
|
|
UnexpectedSnafu {
|
|
reason: "Query context is missing",
|
|
}
|
|
.build()
|
|
})?;
|
|
let stmt = QueryLanguageParser::parse_sql(sql, &query_ctx)
|
|
.map_err(BoxedError::new)
|
|
.context(ExternalSnafu)?;
|
|
let plan = engine
|
|
.planner()
|
|
.plan(&stmt, query_ctx)
|
|
.await
|
|
.map_err(BoxedError::new)
|
|
.context(ExternalSnafu)?;
|
|
|
|
let opted_plan = apply_df_optimizer(plan).await?;
|
|
|
|
// TODO(discord9): add df optimization
|
|
let sub_plan = DFLogicalSubstraitConvertor {}
|
|
.to_sub_plan(&opted_plan, DefaultSerializer)
|
|
.map_err(BoxedError::new)
|
|
.context(ExternalSnafu)?;
|
|
|
|
let flow_plan = TypedPlan::from_substrait_plan(ctx, &sub_plan).await?;
|
|
|
|
Ok(flow_plan)
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct AvgExpandRule;
|
|
|
|
impl AnalyzerRule for AvgExpandRule {
|
|
fn analyze(
|
|
&self,
|
|
plan: datafusion_expr::LogicalPlan,
|
|
_config: &ConfigOptions,
|
|
) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
|
|
let transformed = plan
|
|
.transform_up_with_subqueries(expand_avg_analyzer)?
|
|
.data
|
|
.transform_down_with_subqueries(put_aggr_to_proj_analyzer)?
|
|
.data;
|
|
Ok(transformed)
|
|
}
|
|
|
|
fn name(&self) -> &str {
|
|
"avg_expand"
|
|
}
|
|
}
|
|
|
|
/// lift aggr's composite aggr_expr to outer proj, and leave aggr only with simple direct aggr expr
|
|
/// i.e.
|
|
/// ```ignore
|
|
/// proj: avg(x)
|
|
/// -- aggr: [sum(x)/count(x) as avg(x)]
|
|
/// ```
|
|
/// becomes:
|
|
/// ```ignore
|
|
/// proj: sum(x)/count(x) as avg(x)
|
|
/// -- aggr: [sum(x), count(x)]
|
|
/// ```
|
|
fn put_aggr_to_proj_analyzer(
|
|
plan: datafusion_expr::LogicalPlan,
|
|
) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
|
|
if let datafusion_expr::LogicalPlan::Projection(proj) = &plan {
|
|
if let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref() {
|
|
let mut replace_old_proj_exprs = HashMap::new();
|
|
let mut expanded_aggr_exprs = vec![];
|
|
for aggr_expr in &aggr.aggr_expr {
|
|
let mut is_composite = false;
|
|
if let Expr::AggregateFunction(_) = &aggr_expr {
|
|
expanded_aggr_exprs.push(aggr_expr.clone());
|
|
} else {
|
|
let old_name = aggr_expr.name_for_alias()?;
|
|
let new_proj_expr = aggr_expr
|
|
.clone()
|
|
.transform(|ch| {
|
|
if let Expr::AggregateFunction(_) = &ch {
|
|
is_composite = true;
|
|
expanded_aggr_exprs.push(ch.clone());
|
|
Ok(Transformed::yes(Expr::Column(Column::from_qualified_name(
|
|
ch.name_for_alias()?,
|
|
))))
|
|
} else {
|
|
Ok(Transformed::no(ch))
|
|
}
|
|
})?
|
|
.data;
|
|
replace_old_proj_exprs.insert(old_name, new_proj_expr);
|
|
}
|
|
}
|
|
|
|
if expanded_aggr_exprs.len() > aggr.aggr_expr.len() {
|
|
let mut aggr = aggr.clone();
|
|
aggr.aggr_expr = expanded_aggr_exprs;
|
|
let mut aggr_plan = datafusion_expr::LogicalPlan::Aggregate(aggr);
|
|
// important to recompute schema after changing aggr_expr
|
|
aggr_plan = aggr_plan.recompute_schema()?;
|
|
|
|
// reconstruct proj with new proj_exprs
|
|
let mut new_proj_exprs = proj.expr.clone();
|
|
for proj_expr in new_proj_exprs.iter_mut() {
|
|
if let Some(new_proj_expr) =
|
|
replace_old_proj_exprs.get(&proj_expr.name_for_alias()?)
|
|
{
|
|
*proj_expr = new_proj_expr.clone();
|
|
}
|
|
*proj_expr = proj_expr
|
|
.clone()
|
|
.transform(|expr| {
|
|
if let Some(new_expr) =
|
|
replace_old_proj_exprs.get(&expr.name_for_alias()?)
|
|
{
|
|
Ok(Transformed::yes(new_expr.clone()))
|
|
} else {
|
|
Ok(Transformed::no(expr))
|
|
}
|
|
})?
|
|
.data;
|
|
}
|
|
let proj = datafusion_expr::LogicalPlan::Projection(Projection::try_new(
|
|
new_proj_exprs,
|
|
Arc::new(aggr_plan),
|
|
)?);
|
|
return Ok(Transformed::yes(proj));
|
|
}
|
|
}
|
|
}
|
|
Ok(Transformed::no(plan))
|
|
}
|
|
|
|
/// expand `avg(<expr>)` function into `cast(sum((<expr>) AS f64)/count((<expr>)`
|
|
fn expand_avg_analyzer(
|
|
plan: datafusion_expr::LogicalPlan,
|
|
) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
|
|
let mut schema = merge_schema(&plan.inputs());
|
|
|
|
if let datafusion_expr::LogicalPlan::TableScan(ts) = &plan {
|
|
let source_schema =
|
|
DFSchema::try_from_qualified_schema(ts.table_name.clone(), &ts.source.schema())?;
|
|
schema.merge(&source_schema);
|
|
}
|
|
|
|
let mut expr_rewrite = ExpandAvgRewriter::new(&schema);
|
|
|
|
let name_preserver = NamePreserver::new(&plan);
|
|
// apply coercion rewrite all expressions in the plan individually
|
|
plan.map_expressions(|expr| {
|
|
let original_name = name_preserver.save(&expr);
|
|
Ok(expr
|
|
.rewrite(&mut expr_rewrite)?
|
|
.update_data(|expr| original_name.restore(expr)))
|
|
})?
|
|
.map_data(|plan| plan.recompute_schema())
|
|
}
|
|
|
|
/// rewrite `avg(<expr>)` function into `CASE WHEN count(<expr>) !=0 THEN cast(sum((<expr>) AS avg_return_type)/count((<expr>) ELSE 0`
|
|
///
|
|
/// TODO(discord9): support avg return type decimal128
|
|
///
|
|
/// see impl details at https://github.com/apache/datafusion/blob/4ad4f90d86c57226a4e0fb1f79dfaaf0d404c273/datafusion/expr/src/type_coercion/aggregates.rs#L457-L462
|
|
pub(crate) struct ExpandAvgRewriter<'a> {
|
|
/// schema of the plan
|
|
#[allow(unused)]
|
|
pub(crate) schema: &'a DFSchema,
|
|
}
|
|
|
|
impl<'a> ExpandAvgRewriter<'a> {
|
|
fn new(schema: &'a DFSchema) -> Self {
|
|
Self { schema }
|
|
}
|
|
}
|
|
|
|
impl TreeNodeRewriter for ExpandAvgRewriter<'_> {
|
|
type Node = Expr;
|
|
|
|
fn f_up(&mut self, expr: Expr) -> Result<Transformed<Expr>, DataFusionError> {
|
|
if let Expr::AggregateFunction(aggr_func) = &expr {
|
|
if aggr_func.func.name() == "avg" {
|
|
let sum_expr = {
|
|
let mut tmp = aggr_func.clone();
|
|
tmp.func = sum_udaf();
|
|
Expr::AggregateFunction(tmp)
|
|
};
|
|
let sum_cast = {
|
|
let mut tmp = sum_expr.clone();
|
|
tmp = Expr::Cast(datafusion_expr::Cast {
|
|
expr: Box::new(tmp),
|
|
data_type: arrow_schema::DataType::Float64,
|
|
});
|
|
tmp
|
|
};
|
|
|
|
let count_expr = {
|
|
let mut tmp = aggr_func.clone();
|
|
tmp.func = count_udaf();
|
|
|
|
Expr::AggregateFunction(tmp)
|
|
};
|
|
let count_expr_ref =
|
|
Expr::Column(Column::from_qualified_name(count_expr.name_for_alias()?));
|
|
|
|
let div =
|
|
BinaryExpr::new(Box::new(sum_cast), Operator::Divide, Box::new(count_expr));
|
|
let div_expr = Box::new(Expr::BinaryExpr(div));
|
|
|
|
let zero = Box::new(Expr::Literal(ScalarValue::Int64(Some(0))));
|
|
let not_zero =
|
|
BinaryExpr::new(Box::new(count_expr_ref), Operator::NotEq, zero.clone());
|
|
let not_zero = Box::new(Expr::BinaryExpr(not_zero));
|
|
let null = Box::new(Expr::Literal(ScalarValue::Null));
|
|
|
|
let case_when =
|
|
datafusion_expr::Case::new(None, vec![(not_zero, div_expr)], Some(null));
|
|
let case_when_expr = Expr::Case(case_when);
|
|
|
|
return Ok(Transformed::yes(case_when_expr));
|
|
}
|
|
}
|
|
|
|
Ok(Transformed::no(expr))
|
|
}
|
|
}
|
|
|
|
/// expand tumble in aggr expr to tumble_start and tumble_end with column name like `window_start`
|
|
#[derive(Debug)]
|
|
struct TumbleExpandRule;
|
|
|
|
impl AnalyzerRule for TumbleExpandRule {
|
|
fn analyze(
|
|
&self,
|
|
plan: datafusion_expr::LogicalPlan,
|
|
_config: &ConfigOptions,
|
|
) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
|
|
let transformed = plan
|
|
.transform_up_with_subqueries(expand_tumble_analyzer)?
|
|
.data;
|
|
Ok(transformed)
|
|
}
|
|
|
|
fn name(&self) -> &str {
|
|
"tumble_expand"
|
|
}
|
|
}
|
|
|
|
/// expand `tumble` in aggr expr to `tumble_start` and `tumble_end`, also expand related alias and column ref
|
|
///
|
|
/// will add `tumble_start` and `tumble_end` to outer projection if not exist before
|
|
fn expand_tumble_analyzer(
|
|
plan: datafusion_expr::LogicalPlan,
|
|
) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
|
|
if let datafusion_expr::LogicalPlan::Projection(proj) = &plan {
|
|
if let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref() {
|
|
let mut new_group_expr = vec![];
|
|
let mut alias_to_expand = HashMap::new();
|
|
let mut encountered_tumble = false;
|
|
for expr in aggr.group_expr.iter() {
|
|
match expr {
|
|
datafusion_expr::Expr::ScalarFunction(func) if func.name() == "tumble" => {
|
|
encountered_tumble = true;
|
|
|
|
let tumble_start = TumbleExpand::new(TUMBLE_START);
|
|
let tumble_start = datafusion_expr::expr::ScalarFunction::new_udf(
|
|
Arc::new(tumble_start.into()),
|
|
func.args.clone(),
|
|
);
|
|
let tumble_start = datafusion_expr::Expr::ScalarFunction(tumble_start);
|
|
let start_col_name = tumble_start.name_for_alias()?;
|
|
new_group_expr.push(tumble_start);
|
|
|
|
let tumble_end = TumbleExpand::new(TUMBLE_END);
|
|
let tumble_end = datafusion_expr::expr::ScalarFunction::new_udf(
|
|
Arc::new(tumble_end.into()),
|
|
func.args.clone(),
|
|
);
|
|
let tumble_end = datafusion_expr::Expr::ScalarFunction(tumble_end);
|
|
let end_col_name = tumble_end.name_for_alias()?;
|
|
new_group_expr.push(tumble_end);
|
|
|
|
alias_to_expand
|
|
.insert(expr.name_for_alias()?, (start_col_name, end_col_name));
|
|
}
|
|
_ => new_group_expr.push(expr.clone()),
|
|
}
|
|
}
|
|
if !encountered_tumble {
|
|
return Ok(Transformed::no(plan));
|
|
}
|
|
let mut new_aggr = aggr.clone();
|
|
new_aggr.group_expr = new_group_expr;
|
|
let new_aggr = datafusion_expr::LogicalPlan::Aggregate(new_aggr).recompute_schema()?;
|
|
// replace alias in projection if needed, and add new column ref if necessary
|
|
let mut new_proj_expr = vec![];
|
|
let mut have_expanded = false;
|
|
|
|
for proj_expr in proj.expr.iter() {
|
|
if let Some((start_col_name, end_col_name)) =
|
|
alias_to_expand.get(&proj_expr.name_for_alias()?)
|
|
{
|
|
let start_col = Column::from_qualified_name(start_col_name);
|
|
let end_col = Column::from_qualified_name(end_col_name);
|
|
new_proj_expr.push(datafusion_expr::Expr::Column(start_col));
|
|
new_proj_expr.push(datafusion_expr::Expr::Column(end_col));
|
|
have_expanded = true;
|
|
} else {
|
|
new_proj_expr.push(proj_expr.clone());
|
|
}
|
|
}
|
|
|
|
// append to end of projection if not exist
|
|
if !have_expanded {
|
|
for (start_col_name, end_col_name) in alias_to_expand.values() {
|
|
let start_col = Column::from_qualified_name(start_col_name);
|
|
let end_col = Column::from_qualified_name(end_col_name);
|
|
new_proj_expr
|
|
.push(datafusion_expr::Expr::Column(start_col).alias("window_start"));
|
|
new_proj_expr.push(datafusion_expr::Expr::Column(end_col).alias("window_end"));
|
|
}
|
|
}
|
|
|
|
let new_proj = datafusion_expr::LogicalPlan::Projection(Projection::try_new(
|
|
new_proj_expr,
|
|
Arc::new(new_aggr),
|
|
)?);
|
|
return Ok(Transformed::yes(new_proj));
|
|
}
|
|
}
|
|
|
|
Ok(Transformed::no(plan))
|
|
}
|
|
|
|
/// This is a placeholder for tumble_start and tumble_end function, so that datafusion can
|
|
/// recognize them as scalar function
|
|
#[derive(Debug)]
|
|
pub struct TumbleExpand {
|
|
signature: Signature,
|
|
name: String,
|
|
}
|
|
|
|
impl TumbleExpand {
|
|
pub fn new(name: &str) -> Self {
|
|
Self {
|
|
signature: Signature::new(TypeSignature::UserDefined, Volatility::Immutable),
|
|
name: name.to_string(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ScalarUDFImpl for TumbleExpand {
|
|
fn as_any(&self) -> &dyn std::any::Any {
|
|
self
|
|
}
|
|
|
|
fn name(&self) -> &str {
|
|
&self.name
|
|
}
|
|
|
|
/// elide the signature for now
|
|
fn signature(&self) -> &Signature {
|
|
&self.signature
|
|
}
|
|
|
|
fn coerce_types(
|
|
&self,
|
|
arg_types: &[arrow_schema::DataType],
|
|
) -> datafusion_common::Result<Vec<arrow_schema::DataType>> {
|
|
match (arg_types.first(), arg_types.get(1), arg_types.get(2)) {
|
|
(Some(ts), Some(window), opt) => {
|
|
use arrow_schema::DataType::*;
|
|
if !matches!(ts, Date32 | Timestamp(_, _)) {
|
|
return Err(DataFusionError::Plan(
|
|
format!("Expect timestamp column as first arg for tumble_start, found {:?}", ts)
|
|
));
|
|
}
|
|
if !matches!(window, Utf8 | Interval(_)) {
|
|
return Err(DataFusionError::Plan(
|
|
format!("Expect second arg for window size's type being interval for tumble_start, found {:?}", window),
|
|
));
|
|
}
|
|
|
|
if let Some(start_time) = opt{
|
|
if !matches!(start_time, Utf8 | Date32 | Timestamp(_, _)){
|
|
return Err(DataFusionError::Plan(
|
|
format!("Expect start_time to either be date, timestamp or string, found {:?}", start_time)
|
|
));
|
|
}
|
|
}
|
|
|
|
Ok(arg_types.to_vec())
|
|
}
|
|
_ => Err(DataFusionError::Plan(
|
|
"Expect tumble function have at least two arg(timestamp column and window size) and a third optional arg for starting time".to_string(),
|
|
)),
|
|
}
|
|
}
|
|
|
|
fn return_type(
|
|
&self,
|
|
arg_types: &[arrow_schema::DataType],
|
|
) -> Result<arrow_schema::DataType, DataFusionError> {
|
|
arg_types.first().cloned().ok_or_else(|| {
|
|
DataFusionError::Plan(
|
|
"Expect tumble function have at least two arg(timestamp column and window size)"
|
|
.to_string(),
|
|
)
|
|
})
|
|
}
|
|
|
|
fn invoke_with_args(
|
|
&self,
|
|
_args: ScalarFunctionArgs,
|
|
) -> datafusion_common::Result<ColumnarValue> {
|
|
Err(DataFusionError::Plan(
|
|
"This function should not be executed by datafusion".to_string(),
|
|
))
|
|
}
|
|
}
|
|
|
|
/// This rule check all group by exprs, and make sure they are also in select clause in a aggr query
|
|
#[derive(Debug)]
|
|
struct CheckGroupByRule {}
|
|
|
|
impl CheckGroupByRule {
|
|
pub fn new() -> Self {
|
|
Self {}
|
|
}
|
|
}
|
|
|
|
impl AnalyzerRule for CheckGroupByRule {
|
|
fn analyze(
|
|
&self,
|
|
plan: datafusion_expr::LogicalPlan,
|
|
_config: &ConfigOptions,
|
|
) -> datafusion_common::Result<datafusion_expr::LogicalPlan> {
|
|
let transformed = plan
|
|
.transform_up_with_subqueries(check_group_by_analyzer)?
|
|
.data;
|
|
Ok(transformed)
|
|
}
|
|
|
|
fn name(&self) -> &str {
|
|
"check_groupby"
|
|
}
|
|
}
|
|
|
|
/// make sure everything in group by's expr is in select
|
|
fn check_group_by_analyzer(
|
|
plan: datafusion_expr::LogicalPlan,
|
|
) -> Result<Transformed<datafusion_expr::LogicalPlan>, DataFusionError> {
|
|
if let datafusion_expr::LogicalPlan::Projection(proj) = &plan {
|
|
if let datafusion_expr::LogicalPlan::Aggregate(aggr) = proj.input.as_ref() {
|
|
let mut found_column_used = FindColumn::new();
|
|
proj.expr
|
|
.iter()
|
|
.map(|i| i.visit(&mut found_column_used))
|
|
.count();
|
|
for expr in aggr.group_expr.iter() {
|
|
if !found_column_used
|
|
.names_for_alias
|
|
.contains(&expr.name_for_alias()?)
|
|
{
|
|
return Err(DataFusionError::Plan(format!("Expect {} expr in group by also exist in select list, but select list only contain {:?}",expr.name_for_alias()?, found_column_used.names_for_alias)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(Transformed::no(plan))
|
|
}
|
|
|
|
/// Find all column names in a plan
|
|
#[derive(Debug, Default)]
|
|
struct FindColumn {
|
|
names_for_alias: HashSet<String>,
|
|
}
|
|
|
|
impl FindColumn {
|
|
fn new() -> Self {
|
|
Default::default()
|
|
}
|
|
}
|
|
|
|
impl TreeNodeVisitor<'_> for FindColumn {
|
|
type Node = datafusion_expr::Expr;
|
|
fn f_down(
|
|
&mut self,
|
|
node: &datafusion_expr::Expr,
|
|
) -> Result<TreeNodeRecursion, DataFusionError> {
|
|
if let datafusion_expr::Expr::Column(_) = node {
|
|
self.names_for_alias.insert(node.name_for_alias()?);
|
|
}
|
|
Ok(TreeNodeRecursion::Continue)
|
|
}
|
|
}
|