mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-09 05:12:58 +00:00
[Python] Create table with Iterator[RecordBatch] and add docs (#316)
This commit is contained in:
@@ -13,11 +13,12 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import functools
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
from pyarrow import fs
|
||||
|
||||
@@ -38,8 +39,10 @@ class DBConnection(ABC):
|
||||
def create_table(
|
||||
self,
|
||||
name: str,
|
||||
data: DATA = None,
|
||||
schema: pa.Schema = None,
|
||||
data: Optional[
|
||||
Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
|
||||
] = None,
|
||||
schema: Optional[pa.Schema] = None,
|
||||
mode: str = "create",
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
@@ -51,7 +54,7 @@ class DBConnection(ABC):
|
||||
name: str
|
||||
The name of the table.
|
||||
data: list, tuple, dict, pd.DataFrame; optional
|
||||
The data to insert into the table.
|
||||
The data to initialize the table. User must provide at least one of `data` or `schema`.
|
||||
schema: pyarrow.Schema; optional
|
||||
The schema of the table.
|
||||
mode: str; default "create"
|
||||
@@ -64,16 +67,16 @@ class DBConnection(ABC):
|
||||
fill_value: float
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
|
||||
Note
|
||||
----
|
||||
The vector index won't be created by default.
|
||||
To create the index, call the `create_index` method on the table.
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceTable
|
||||
A reference to the newly created table.
|
||||
|
||||
!!! note
|
||||
|
||||
The vector index won't be created by default.
|
||||
To create the index, call the `create_index` method on the table.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
@@ -119,7 +122,7 @@ class DBConnection(ABC):
|
||||
|
||||
Data is converted to Arrow before being written to disk. For maximum
|
||||
control over how data is saved, either provide the PyArrow schema to
|
||||
convert to or else provide a PyArrow table directly.
|
||||
convert to or else provide a [PyArrow Table](pyarrow.Table) directly.
|
||||
|
||||
>>> custom_schema = pa.schema([
|
||||
... pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||
@@ -138,6 +141,30 @@ class DBConnection(ABC):
|
||||
vector: [[[1.1,1.2],[0.2,1.8]]]
|
||||
lat: [[45.5,40.1]]
|
||||
long: [[-122.7,-74.1]]
|
||||
|
||||
|
||||
It is also possible to create an table from `[Iterable[pa.RecordBatch]]`:
|
||||
|
||||
|
||||
>>> import pyarrow as pa
|
||||
>>> def make_batches():
|
||||
... for i in range(5):
|
||||
... yield pa.RecordBatch.from_arrays(
|
||||
... [
|
||||
... pa.array([[3.1, 4.1], [5.9, 26.5]]),
|
||||
... pa.array(["foo", "bar"]),
|
||||
... pa.array([10.0, 20.0]),
|
||||
... ],
|
||||
... ["vector", "item", "price"],
|
||||
... )
|
||||
>>> schema=pa.schema([
|
||||
... pa.field("vector", pa.list_(pa.float32())),
|
||||
... pa.field("item", pa.utf8()),
|
||||
... pa.field("price", pa.float32()),
|
||||
... ])
|
||||
>>> db.create_table("table4", make_batches(), schema=schema)
|
||||
LanceTable(table4)
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -252,7 +279,7 @@ class LanceDBConnection(DBConnection):
|
||||
def create_table(
|
||||
self,
|
||||
name: str,
|
||||
data: DATA = None,
|
||||
data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
|
||||
schema: pa.Schema = None,
|
||||
mode: str = "create",
|
||||
on_bad_vectors: str = "error",
|
||||
|
||||
@@ -16,7 +16,7 @@ from __future__ import annotations
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from functools import cached_property
|
||||
from typing import List, Union
|
||||
from typing import Iterable, List, Union
|
||||
|
||||
import lance
|
||||
import numpy as np
|
||||
@@ -44,7 +44,7 @@ def _sanitize_data(data, schema, on_bad_vectors, fill_value):
|
||||
data = _sanitize_schema(
|
||||
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||
)
|
||||
if not isinstance(data, pa.Table):
|
||||
if not isinstance(data, (pa.Table, Iterable)):
|
||||
raise TypeError(f"Unsupported data type: {type(data)}")
|
||||
return data
|
||||
|
||||
@@ -483,7 +483,7 @@ class LanceTable(Table):
|
||||
if schema is None:
|
||||
raise ValueError("Either data or schema must be provided")
|
||||
data = pa.Table.from_pylist([], schema=schema)
|
||||
lance.write_dataset(data, tbl._dataset_uri, mode=mode)
|
||||
lance.write_dataset(data, tbl._dataset_uri, schema=schema, mode=mode)
|
||||
return LanceTable(db, name)
|
||||
|
||||
@classmethod
|
||||
|
||||
Reference in New Issue
Block a user