mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-26 22:59:57 +00:00
[Python] Convert Pydantic Model to Arrow Schema (#291)
Provide utility to automatically convert Pydantic model to Arrow Schema Closes #256
This commit is contained in:
155
python/tests/test_pydantic.py
Normal file
155
python/tests/test_pydantic.py
Normal file
@@ -0,0 +1,155 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import json
|
||||
import sys
|
||||
from typing import List, Optional
|
||||
|
||||
import pyarrow as pa
|
||||
import pydantic
|
||||
import pytest
|
||||
|
||||
from lancedb.pydantic import pydantic_to_schema, vector
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
sys.version_info < (3, 9),
|
||||
reason="using native type alias requires python3.9 or higher",
|
||||
)
|
||||
def test_pydantic_to_arrow():
|
||||
class StructModel(pydantic.BaseModel):
|
||||
a: str
|
||||
b: Optional[float]
|
||||
|
||||
class TestModel(pydantic.BaseModel):
|
||||
id: int
|
||||
s: str
|
||||
vec: list[float]
|
||||
li: List[int]
|
||||
opt: Optional[str] = None
|
||||
st: StructModel
|
||||
# d: dict
|
||||
|
||||
m = TestModel(
|
||||
id=1, s="hello", vec=[1.0, 2.0, 3.0], li=[2, 3, 4], st=StructModel(a="a", b=1.0)
|
||||
)
|
||||
|
||||
schema = pydantic_to_schema(TestModel)
|
||||
|
||||
expect_schema = pa.schema(
|
||||
[
|
||||
pa.field("id", pa.int64(), False),
|
||||
pa.field("s", pa.utf8(), False),
|
||||
pa.field("vec", pa.list_(pa.float64()), False),
|
||||
pa.field("li", pa.list_(pa.int64()), False),
|
||||
pa.field("opt", pa.utf8(), True),
|
||||
pa.field(
|
||||
"st",
|
||||
pa.struct(
|
||||
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
|
||||
),
|
||||
False,
|
||||
),
|
||||
]
|
||||
)
|
||||
assert schema == expect_schema
|
||||
|
||||
|
||||
def test_pydantic_to_arrow_py38():
|
||||
class StructModel(pydantic.BaseModel):
|
||||
a: str
|
||||
b: Optional[float]
|
||||
|
||||
class TestModel(pydantic.BaseModel):
|
||||
id: int
|
||||
s: str
|
||||
vec: List[float]
|
||||
li: List[int]
|
||||
opt: Optional[str] = None
|
||||
st: StructModel
|
||||
# d: dict
|
||||
|
||||
m = TestModel(
|
||||
id=1, s="hello", vec=[1.0, 2.0, 3.0], li=[2, 3, 4], st=StructModel(a="a", b=1.0)
|
||||
)
|
||||
|
||||
schema = pydantic_to_schema(TestModel)
|
||||
|
||||
expect_schema = pa.schema(
|
||||
[
|
||||
pa.field("id", pa.int64(), False),
|
||||
pa.field("s", pa.utf8(), False),
|
||||
pa.field("vec", pa.list_(pa.float64()), False),
|
||||
pa.field("li", pa.list_(pa.int64()), False),
|
||||
pa.field("opt", pa.utf8(), True),
|
||||
pa.field(
|
||||
"st",
|
||||
pa.struct(
|
||||
[pa.field("a", pa.utf8(), False), pa.field("b", pa.float64(), True)]
|
||||
),
|
||||
False,
|
||||
),
|
||||
]
|
||||
)
|
||||
assert schema == expect_schema
|
||||
|
||||
|
||||
def test_fixed_size_list_field():
|
||||
class TestModel(pydantic.BaseModel):
|
||||
vec: vector(16)
|
||||
li: List[int]
|
||||
|
||||
data = TestModel(vec=list(range(16)), li=[1, 2, 3])
|
||||
assert json.loads(data.model_dump_json()) == {
|
||||
"vec": list(range(16)),
|
||||
"li": [1, 2, 3],
|
||||
}
|
||||
|
||||
schema = pydantic_to_schema(TestModel)
|
||||
assert schema == pa.schema(
|
||||
[
|
||||
pa.field("vec", pa.list_(pa.float32(), 16), False),
|
||||
pa.field("li", pa.list_(pa.int64()), False),
|
||||
]
|
||||
)
|
||||
|
||||
json_schema = TestModel.model_json_schema()
|
||||
assert json_schema == {
|
||||
"properties": {
|
||||
"vec": {
|
||||
"items": {"type": "number"},
|
||||
"maxItems": 16,
|
||||
"minItems": 16,
|
||||
"title": "Vec",
|
||||
"type": "array",
|
||||
},
|
||||
"li": {"items": {"type": "integer"}, "title": "Li", "type": "array"},
|
||||
},
|
||||
"required": ["vec", "li"],
|
||||
"title": "TestModel",
|
||||
"type": "object",
|
||||
}
|
||||
|
||||
|
||||
def test_fixed_size_list_validation():
|
||||
class TestModel(pydantic.BaseModel):
|
||||
vec: vector(8)
|
||||
|
||||
with pytest.raises(pydantic.ValidationError):
|
||||
TestModel(vec=range(9))
|
||||
|
||||
with pytest.raises(pydantic.ValidationError):
|
||||
TestModel(vec=range(7))
|
||||
|
||||
TestModel(vec=range(8))
|
||||
Reference in New Issue
Block a user