mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-06 03:42:57 +00:00
docs: add evaluation example (#1552)
before:  After:  --------- Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
23
docs/src/examples/python_examples/evaluations.md
Normal file
23
docs/src/examples/python_examples/evaluations.md
Normal file
@@ -0,0 +1,23 @@
|
||||
**Evaluation: Assessing Text Performance with Precision 📊💡**
|
||||
====================================================================
|
||||
|
||||
**Evaluation Fundamentals 📊**
|
||||
|
||||
Evaluation is a comprehensive tool designed to measure the performance of text-based inputs, enabling data-driven optimization and improvement 📈.
|
||||
|
||||
**Text Evaluation 101 📚**
|
||||
|
||||
By leveraging cutting-edge technologies, this provides a robust framework for evaluating reference and candidate texts across various metrics 📊, ensuring high-quality text outputs that meet specific requirements and standards 📝.
|
||||
|
||||
| **Evaluation** | **Description** | **Links** |
|
||||
| -------------- | --------------- | --------- |
|
||||
| **Evaluating Prompts with Prompttools 🤖** | Compare, visualize & evaluate embedding functions (incl. OpenAI) across metrics like latency & custom evaluation 📈📊 | [][prompttools_github] <br>[][prompttools_colab] |
|
||||
| **Evaluating RAG with RAGAs and GPT-4o 📊** | Evaluate RAG pipelines with cutting-edge metrics and tools, integrate with CI/CD for continuous performance checks, and generate responses with GPT-4o 🤖📈 | [][RAGAs_github] <br>[][RAGAs_colab] |
|
||||
|
||||
|
||||
|
||||
[prompttools_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts
|
||||
[prompttools_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb
|
||||
|
||||
[RAGAs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs
|
||||
[RAGAs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb
|
||||
@@ -1,10 +1,10 @@
|
||||
# **Multimodal Search with LanceDB 🤹♂️🔍**
|
||||
|
||||
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus and unlock new possibilities! 🔓💡
|
||||
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus ! 🔓💡
|
||||
|
||||
**Explore the Future of Search 🚀**
|
||||
|
||||
Unlock the power of multimodal search with LanceDB, enabling efficient vector-based retrieval of text and image data! 📊💻
|
||||
LanceDB supports multimodal search by indexing and querying vector representations of text and image data 🤖. This enables efficient retrieval of relevant documents and images using vector-based similarity search 📊. The platform facilitates cross-modal search, allowing for text-image and image-text retrieval, and supports scalable indexing of high-dimensional vector spaces 💻.
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -2,12 +2,11 @@
|
||||
**RAG: Revolutionize Information Retrieval with LanceDB 🔓🧐**
|
||||
====================================================================
|
||||
|
||||
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, the ultimate solution for efficient vector-based information retrieval 📊. Input text queries and retrieve relevant documents with lightning-fast speed ⚡️ and accuracy ✅. Generate comprehensive answers by combining retrieved information, uncovering new insights 🔍 and connections.
|
||||
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, a solution for efficient vector-based information retrieval 📊.
|
||||
|
||||
**Experience the Future of Search 🔄**
|
||||
|
||||
Experience the future of search with RAG, transforming information retrieval and answer generation. Apply RAG to various industries, streamlining processes 📈, saving time ⏰, and resources 💰. Stay ahead of the curve with innovative technology 🔝, powered by LanceDB. Discover the power of RAG with LanceDB and transform your industry with innovative solutions 💡.
|
||||
|
||||
RAG integrates large language models (LLMs) with scalable knowledge bases, enabling efficient information retrieval and answer generation 🤖. By applying RAG to industry-specific use cases, developers can optimize query processing 📊, reduce response latency ⏱️, and improve resource utilization 💻. LanceDB provides a robust framework for integrating LLMs with external knowledge sources, facilitating accurate and informative responses 📝.
|
||||
|
||||
| **RAG** | **Description** | **Links** |
|
||||
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
**Vector Search: Unlock Efficient Document Retrieval 🔓👀**
|
||||
====================================================================
|
||||
|
||||
Unlock the power of vector search with LanceDB, a cutting-edge solution for efficient vector-based document retrieval 📊. Input text queries to find the most relevant documents from your corpus, and discover a new world of possibilities with our inbuilt hybrid search features 🌐.
|
||||
Unlock the power of vector search with LanceDB, a cutting-edge solution for efficient vector-based document retrieval 📊.
|
||||
|
||||
**Unlock the Future of Search🔝**
|
||||
**Vector Search Capabilities in LanceDB🔝**
|
||||
|
||||
Experience the transformative power of vector search with LanceDB. Discover, analyze, and retrieve documents with unprecedented efficiency and accuracy. 💡
|
||||
LanceDB implements vector search algorithms for efficient document retrieval and analysis 📊. This enables fast and accurate discovery of relevant documents, leveraging dense vector representations 🤖. The platform supports scalable indexing and querying of high-dimensional vector spaces, facilitating precise document matching and retrieval 📈.
|
||||
|
||||
| **Vector Search** | **Description** | **Links** |
|
||||
|:-----------------|:---------------|:---------|
|
||||
|
||||
Reference in New Issue
Block a user