mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-05 19:32:56 +00:00
docs: add links to rust SDK docs, remove references to rust SDK being unstable / experimental (#1131)
This commit is contained in:
@@ -22,7 +22,7 @@ Currently, LanceDB supports the following metrics:
|
||||
## Exhaustive search (kNN)
|
||||
|
||||
If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space
|
||||
and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
|
||||
and computes the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
|
||||
|
||||
<!-- Setup Code
|
||||
```python
|
||||
@@ -85,7 +85,7 @@ To perform scalable vector retrieval with acceptable latencies, it's common to b
|
||||
While the exhaustive search is guaranteed to always return 100% recall, the approximate nature of
|
||||
an ANN search means that using an index often involves a trade-off between recall and latency.
|
||||
|
||||
See the [IVF_PQ index](./concepts/index_ivfpq.md.md) for a deeper description of how `IVF_PQ`
|
||||
See the [IVF_PQ index](./concepts/index_ivfpq.md) for a deeper description of how `IVF_PQ`
|
||||
indexes work in LanceDB.
|
||||
|
||||
## Output search results
|
||||
@@ -184,4 +184,3 @@ Let's create a LanceDB table with a nested schema:
|
||||
|
||||
Note that in this case the extra `_distance` field is discarded since
|
||||
it's not part of the LanceSchema.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user