mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-25 14:29:56 +00:00
fix: hybrid search explain plan analyze plan (#2360)
Fix hybrid search explain plan analyze plan API <!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **New Features** - Added options to view the execution plan and analyze the runtime performance of hybrid queries. - **Refactor** - Improved internal handling of query setup for better modularity and maintainability. <!-- end of auto-generated comment: release notes by coderabbit.ai -->
This commit is contained in:
@@ -1636,51 +1636,7 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
raise NotImplementedError("to_query_object not yet supported on a hybrid query")
|
||||
|
||||
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
|
||||
vector_query, fts_query = self._validate_query(
|
||||
self._query, self._vector, self._text
|
||||
)
|
||||
self._fts_query = LanceFtsQueryBuilder(
|
||||
self._table, fts_query, fts_columns=self._fts_columns
|
||||
)
|
||||
vector_query = self._query_to_vector(
|
||||
self._table, vector_query, self._vector_column
|
||||
)
|
||||
self._vector_query = LanceVectorQueryBuilder(
|
||||
self._table, vector_query, self._vector_column
|
||||
)
|
||||
|
||||
if self._limit:
|
||||
self._vector_query.limit(self._limit)
|
||||
self._fts_query.limit(self._limit)
|
||||
if self._columns:
|
||||
self._vector_query.select(self._columns)
|
||||
self._fts_query.select(self._columns)
|
||||
if self._where:
|
||||
self._vector_query.where(self._where, self._postfilter)
|
||||
self._fts_query.where(self._where, self._postfilter)
|
||||
if self._with_row_id:
|
||||
self._vector_query.with_row_id(True)
|
||||
self._fts_query.with_row_id(True)
|
||||
if self._phrase_query:
|
||||
self._fts_query.phrase_query(True)
|
||||
if self._distance_type:
|
||||
self._vector_query.metric(self._distance_type)
|
||||
if self._nprobes:
|
||||
self._vector_query.nprobes(self._nprobes)
|
||||
if self._refine_factor:
|
||||
self._vector_query.refine_factor(self._refine_factor)
|
||||
if self._ef:
|
||||
self._vector_query.ef(self._ef)
|
||||
if self._bypass_vector_index:
|
||||
self._vector_query.bypass_vector_index()
|
||||
if self._lower_bound or self._upper_bound:
|
||||
self._vector_query.distance_range(
|
||||
lower_bound=self._lower_bound, upper_bound=self._upper_bound
|
||||
)
|
||||
|
||||
if self._reranker is None:
|
||||
self._reranker = RRFReranker()
|
||||
|
||||
self._create_query_builders()
|
||||
with ThreadPoolExecutor() as executor:
|
||||
fts_future = executor.submit(
|
||||
self._fts_query.with_row_id(True).to_arrow, timeout=timeout
|
||||
@@ -2003,6 +1959,112 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
self._bypass_vector_index = True
|
||||
return self
|
||||
|
||||
def explain_plan(self, verbose: Optional[bool] = False) -> str:
|
||||
"""Return the execution plan for this query.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> table = db.create_table("my_table", [{"vector": [99.0, 99]}])
|
||||
>>> query = [100, 100]
|
||||
>>> plan = table.search(query).explain_plan(True)
|
||||
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
|
||||
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
|
||||
GlobalLimitExec: skip=0, fetch=10
|
||||
FilterExec: _distance@2 IS NOT NULL
|
||||
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
|
||||
KNNVectorDistance: metric=l2
|
||||
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
|
||||
|
||||
Parameters
|
||||
----------
|
||||
verbose : bool, default False
|
||||
Use a verbose output format.
|
||||
|
||||
Returns
|
||||
-------
|
||||
plan : str
|
||||
""" # noqa: E501
|
||||
self._create_query_builders()
|
||||
|
||||
results = ["Vector Search Plan:"]
|
||||
results.append(
|
||||
self._table._explain_plan(
|
||||
self._vector_query.to_query_object(), verbose=verbose
|
||||
)
|
||||
)
|
||||
results.append("FTS Search Plan:")
|
||||
results.append(
|
||||
self._table._explain_plan(
|
||||
self._fts_query.to_query_object(), verbose=verbose
|
||||
)
|
||||
)
|
||||
return "\n".join(results)
|
||||
|
||||
def analyze_plan(self):
|
||||
"""Execute the query and display with runtime metrics.
|
||||
|
||||
Returns
|
||||
-------
|
||||
plan : str
|
||||
"""
|
||||
self._create_query_builders()
|
||||
|
||||
results = ["Vector Search Plan:"]
|
||||
results.append(self._table._analyze_plan(self._vector_query.to_query_object()))
|
||||
results.append("FTS Search Plan:")
|
||||
results.append(self._table._analyze_plan(self._fts_query.to_query_object()))
|
||||
return "\n".join(results)
|
||||
|
||||
def _create_query_builders(self):
|
||||
"""Set up and configure the vector and FTS query builders."""
|
||||
vector_query, fts_query = self._validate_query(
|
||||
self._query, self._vector, self._text
|
||||
)
|
||||
self._fts_query = LanceFtsQueryBuilder(
|
||||
self._table, fts_query, fts_columns=self._fts_columns
|
||||
)
|
||||
vector_query = self._query_to_vector(
|
||||
self._table, vector_query, self._vector_column
|
||||
)
|
||||
self._vector_query = LanceVectorQueryBuilder(
|
||||
self._table, vector_query, self._vector_column
|
||||
)
|
||||
|
||||
# Apply common configurations
|
||||
if self._limit:
|
||||
self._vector_query.limit(self._limit)
|
||||
self._fts_query.limit(self._limit)
|
||||
if self._columns:
|
||||
self._vector_query.select(self._columns)
|
||||
self._fts_query.select(self._columns)
|
||||
if self._where:
|
||||
self._vector_query.where(self._where, self._postfilter)
|
||||
self._fts_query.where(self._where, self._postfilter)
|
||||
if self._with_row_id:
|
||||
self._vector_query.with_row_id(True)
|
||||
self._fts_query.with_row_id(True)
|
||||
if self._phrase_query:
|
||||
self._fts_query.phrase_query(True)
|
||||
if self._distance_type:
|
||||
self._vector_query.metric(self._distance_type)
|
||||
if self._nprobes:
|
||||
self._vector_query.nprobes(self._nprobes)
|
||||
if self._refine_factor:
|
||||
self._vector_query.refine_factor(self._refine_factor)
|
||||
if self._ef:
|
||||
self._vector_query.ef(self._ef)
|
||||
if self._bypass_vector_index:
|
||||
self._vector_query.bypass_vector_index()
|
||||
if self._lower_bound or self._upper_bound:
|
||||
self._vector_query.distance_range(
|
||||
lower_bound=self._lower_bound, upper_bound=self._upper_bound
|
||||
)
|
||||
|
||||
if self._reranker is None:
|
||||
self._reranker = RRFReranker()
|
||||
|
||||
|
||||
class AsyncQueryBase(object):
|
||||
def __init__(self, inner: Union[LanceQuery, LanceVectorQuery]):
|
||||
|
||||
Reference in New Issue
Block a user