Qian/make vector col optional (#950)

remote SDK tests were completed through lancedb_integtest
This commit is contained in:
QianZhu
2024-02-12 16:35:44 -08:00
committed by GitHub
parent 0c21f91c16
commit 1b990983b3
8 changed files with 154 additions and 22 deletions

View File

@@ -69,10 +69,14 @@ def test_basic_text_embeddings(alias, tmp_path):
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
actual = (
table.search(query, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
vec = func.compute_query_embeddings(query)[0]
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
expected = (
table.search(vec, vector_column_name="vector").limit(1).to_pydantic(Words)[0]
)
assert actual.text == expected.text
assert actual.text == "hello world"
assert not np.allclose(actual.vector, actual.vector2)
@@ -116,7 +120,11 @@ def test_openclip(tmp_path):
)
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
actual = (
table.search("man's best friend", vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
@@ -130,7 +138,11 @@ def test_openclip(tmp_path):
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
actual = (
table.search(query_image, vector_column_name="vector")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == "dog"
other = (
table.search(query_image, vector_column_name="vec_from_bytes")

View File

@@ -38,4 +38,5 @@ def test_remote_db():
setattr(conn, "_client", FakeLanceDBClient())
table = conn["test"]
table.schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), 2))])
table.search([1.0, 2.0]).to_pandas()

View File

@@ -710,6 +710,59 @@ def test_empty_query(db):
assert len(df) == 100
def test_search_with_schema_inf_single_vector(db):
class MyTable(LanceModel):
text: str
vector_col: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector_col": v1, "text": "foo"},
{"vector_col": v2, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
result1 = table.search(q, vector_column_name="vector_col").limit(1).to_pandas()
result2 = table.search(q).limit(1).to_pandas()
assert result1["text"].iloc[0] == result2["text"].iloc[0]
def test_search_with_schema_inf_multiple_vector(db):
class MyTable(LanceModel):
text: str
vector1: Vector(10)
vector2: Vector(10)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
)
v1 = np.random.randn(10)
v2 = np.random.randn(10)
data = [
{"vector1": v1, "vector2": v2, "text": "foo"},
{"vector1": v2, "vector2": v1, "text": "bar"},
]
df = pd.DataFrame(data)
table.add(df)
q = np.random.randn(10)
with pytest.raises(ValueError):
table.search(q).limit(1).to_pandas()
def test_compact_cleanup(db):
table = LanceTable.create(
db,