Multi-task instructor model with quantization support & weak_lru cache for embedding function models (#612)

resolves #608
This commit is contained in:
Ayush Chaurasia
2023-11-09 12:34:18 +05:30
committed by GitHub
parent 662968559d
commit 1e8678f11a
9 changed files with 270 additions and 10 deletions

View File

@@ -32,8 +32,8 @@ from lancedb.pydantic import LanceModel, Vector
def test_sentence_transformer(alias, tmp_path):
db = lancedb.connect(tmp_path)
registry = get_registry()
func = registry.get(alias).create()
func2 = registry.get(alias).create()
func = registry.get(alias).create(max_retries=0)
func2 = registry.get(alias).create(max_retries=0)
class Words(LanceModel):
text: str = func.SourceField()
@@ -150,7 +150,11 @@ def test_openclip(tmp_path):
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
) # also skip if cohere not installed
def test_cohere_embedding_function():
cohere = get_registry().get("cohere").create(name="embed-multilingual-v2.0")
cohere = (
get_registry()
.get("cohere")
.create(name="embed-multilingual-v2.0", max_retries=0)
)
class TextModel(LanceModel):
text: str = cohere.SourceField()
@@ -162,3 +166,19 @@ def test_cohere_embedding_function():
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()
@pytest.mark.slow
def test_instructor_embedding(tmp_path):
model = get_registry().get("instructor").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()