mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-05 19:32:56 +00:00
fix: bugs for new FTS APIs (#2314)
<!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **New Features** - Enhanced full-text search capabilities with support for phrase queries, fuzzy matching, boosting, and multi-column matching. - Search methods now accept full-text query objects directly, improving query flexibility and precision. - Python and JavaScript SDKs updated to handle full-text queries seamlessly, including async search support. - **Tests** - Added comprehensive tests covering fuzzy search, phrase search, and boosted queries to ensure robust full-text search functionality. - **Documentation** - Updated query class documentation to reflect new constructor options and removal of deprecated methods for clarity and simplicity. <!-- end of auto-generated comment: release notes by coderabbit.ai --> --------- Signed-off-by: BubbleCal <bubble-cal@outlook.com>
This commit is contained in:
@@ -10,7 +10,7 @@ import * as arrow16 from "apache-arrow-16";
|
||||
import * as arrow17 from "apache-arrow-17";
|
||||
import * as arrow18 from "apache-arrow-18";
|
||||
|
||||
import { Table, connect } from "../lancedb";
|
||||
import { MatchQuery, PhraseQuery, Table, connect } from "../lancedb";
|
||||
import {
|
||||
Table as ArrowTable,
|
||||
Field,
|
||||
@@ -33,6 +33,7 @@ import {
|
||||
register,
|
||||
} from "../lancedb/embedding";
|
||||
import { Index } from "../lancedb/indices";
|
||||
import { instanceOfFullTextQuery } from "../lancedb/query";
|
||||
|
||||
describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
"Given a table",
|
||||
@@ -1302,6 +1303,13 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
|
||||
const results = await table.search("hello").toArray();
|
||||
expect(results[0].text).toBe(data[0].text);
|
||||
|
||||
const query = new MatchQuery("goodbye", "text");
|
||||
expect(instanceOfFullTextQuery(query)).toBe(true);
|
||||
const results2 = await table
|
||||
.search(new MatchQuery("goodbye", "text"))
|
||||
.toArray();
|
||||
expect(results2[0].text).toBe(data[1].text);
|
||||
});
|
||||
|
||||
test("full text index on list", async () => {
|
||||
@@ -1375,6 +1383,43 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
|
||||
expect(results.length).toBe(2);
|
||||
const phraseResults = await table.search('"hello world"').toArray();
|
||||
expect(phraseResults.length).toBe(1);
|
||||
const phraseResults2 = await table
|
||||
.search(new PhraseQuery("hello world", "text"))
|
||||
.toArray();
|
||||
expect(phraseResults2.length).toBe(1);
|
||||
});
|
||||
|
||||
test("full text search fuzzy query", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = [
|
||||
{ text: "fa", vector: [0.1, 0.2, 0.3] },
|
||||
{ text: "fo", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "fob", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "focus", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "foo", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "food", vector: [0.4, 0.5, 0.6] },
|
||||
{ text: "foul", vector: [0.4, 0.5, 0.6] },
|
||||
];
|
||||
const table = await db.createTable("test", data);
|
||||
await table.createIndex("text", {
|
||||
config: Index.fts(),
|
||||
});
|
||||
|
||||
const results = await table
|
||||
.search(new MatchQuery("foo", "text"))
|
||||
.toArray();
|
||||
expect(results.length).toBe(1);
|
||||
expect(results[0].text).toBe("foo");
|
||||
|
||||
const fuzzyResults = await table
|
||||
.search(new MatchQuery("foo", "text", { fuzziness: 1 }))
|
||||
.toArray();
|
||||
expect(fuzzyResults.length).toBe(4);
|
||||
const resultSet = new Set(fuzzyResults.map((r) => r.text));
|
||||
expect(resultSet.has("foo")).toBe(true);
|
||||
expect(resultSet.has("fob")).toBe(true);
|
||||
expect(resultSet.has("fo")).toBe(true);
|
||||
expect(resultSet.has("food")).toBe(true);
|
||||
});
|
||||
|
||||
test.each([
|
||||
|
||||
@@ -11,6 +11,7 @@ import {
|
||||
} from "./arrow";
|
||||
import { type IvfPqOptions } from "./indices";
|
||||
import {
|
||||
JsFullTextQuery,
|
||||
RecordBatchIterator as NativeBatchIterator,
|
||||
Query as NativeQuery,
|
||||
Table as NativeTable,
|
||||
@@ -177,9 +178,7 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
|
||||
columns: columns,
|
||||
});
|
||||
} else {
|
||||
// If query is a FullTextQuery object, convert it to a dict
|
||||
const queryObj = query.toDict();
|
||||
inner.fullTextSearch(queryObj);
|
||||
inner.fullTextSearch({ query: query.inner });
|
||||
}
|
||||
});
|
||||
return this;
|
||||
@@ -743,8 +742,7 @@ export class Query extends QueryBase<NativeQuery> {
|
||||
columns: columns,
|
||||
});
|
||||
} else {
|
||||
const queryObj = query.toDict();
|
||||
inner.fullTextSearch(queryObj);
|
||||
inner.fullTextSearch({ query: query.inner });
|
||||
}
|
||||
});
|
||||
return this;
|
||||
@@ -772,130 +770,141 @@ export enum FullTextQueryType {
|
||||
* including methods to retrieve the query type and convert the query to a dictionary format.
|
||||
*/
|
||||
export interface FullTextQuery {
|
||||
/**
|
||||
* Returns the inner query object.
|
||||
* This is the underlying query object used by the database engine.
|
||||
* @ignore
|
||||
*/
|
||||
inner: JsFullTextQuery;
|
||||
|
||||
/**
|
||||
* The type of the full-text query.
|
||||
*/
|
||||
queryType(): FullTextQueryType;
|
||||
toDict(): Record<string, unknown>;
|
||||
}
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we want any here
|
||||
export function instanceOfFullTextQuery(obj: any): obj is FullTextQuery {
|
||||
return obj != null && obj.inner instanceof JsFullTextQuery;
|
||||
}
|
||||
|
||||
export class MatchQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of MatchQuery.
|
||||
*
|
||||
* @param query - The text query to search for.
|
||||
* @param column - The name of the column to search within.
|
||||
* @param boost - (Optional) The boost factor to influence the relevance score of this query. Default is `1.0`.
|
||||
* @param fuzziness - (Optional) The allowed edit distance for fuzzy matching. Default is `0`.
|
||||
* @param maxExpansions - (Optional) The maximum number of terms to consider for fuzzy matching. Default is `50`.
|
||||
* @param options - Optional parameters for the match query.
|
||||
* - `boost`: The boost factor for the query (default is 1.0).
|
||||
* - `fuzziness`: The fuzziness level for the query (default is 0).
|
||||
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
|
||||
*/
|
||||
constructor(
|
||||
private query: string,
|
||||
private column: string,
|
||||
private boost: number = 1.0,
|
||||
private fuzziness: number = 0,
|
||||
private maxExpansions: number = 50,
|
||||
) {}
|
||||
query: string,
|
||||
column: string,
|
||||
options?: {
|
||||
boost?: number;
|
||||
fuzziness?: number;
|
||||
maxExpansions?: number;
|
||||
},
|
||||
) {
|
||||
let fuzziness = options?.fuzziness;
|
||||
if (fuzziness === undefined) {
|
||||
fuzziness = 0;
|
||||
}
|
||||
this.inner = JsFullTextQuery.matchQuery(
|
||||
query,
|
||||
column,
|
||||
options?.boost ?? 1.0,
|
||||
fuzziness,
|
||||
options?.maxExpansions ?? 50,
|
||||
);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.Match;
|
||||
}
|
||||
|
||||
toDict(): Record<string, unknown> {
|
||||
return {
|
||||
[this.queryType()]: {
|
||||
[this.column]: {
|
||||
query: this.query,
|
||||
boost: this.boost,
|
||||
fuzziness: this.fuzziness,
|
||||
// biome-ignore lint/style/useNamingConvention: use underscore for consistency with the other APIs
|
||||
max_expansions: this.maxExpansions,
|
||||
},
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
export class PhraseQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of `PhraseQuery`.
|
||||
*
|
||||
* @param query - The phrase to search for in the specified column.
|
||||
* @param column - The name of the column to search within.
|
||||
*/
|
||||
constructor(
|
||||
private query: string,
|
||||
private column: string,
|
||||
) {}
|
||||
constructor(query: string, column: string) {
|
||||
this.inner = JsFullTextQuery.phraseQuery(query, column);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.MatchPhrase;
|
||||
}
|
||||
|
||||
toDict(): Record<string, unknown> {
|
||||
return {
|
||||
[this.queryType()]: {
|
||||
[this.column]: this.query,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
export class BoostQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of BoostQuery.
|
||||
* The boost returns documents that match the positive query,
|
||||
* but penalizes those that match the negative query.
|
||||
* the penalty is controlled by the `negativeBoost` parameter.
|
||||
*
|
||||
* @param positive - The positive query that boosts the relevance score.
|
||||
* @param negative - The negative query that reduces the relevance score.
|
||||
* @param negativeBoost - The factor by which the negative query reduces the score.
|
||||
* @param options - Optional parameters for the boost query.
|
||||
* - `negativeBoost`: The boost factor for the negative query (default is 0.0).
|
||||
*/
|
||||
constructor(
|
||||
private positive: FullTextQuery,
|
||||
private negative: FullTextQuery,
|
||||
private negativeBoost: number,
|
||||
) {}
|
||||
positive: FullTextQuery,
|
||||
negative: FullTextQuery,
|
||||
options?: {
|
||||
negativeBoost?: number;
|
||||
},
|
||||
) {
|
||||
this.inner = JsFullTextQuery.boostQuery(
|
||||
positive.inner,
|
||||
negative.inner,
|
||||
options?.negativeBoost,
|
||||
);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.Boost;
|
||||
}
|
||||
|
||||
toDict(): Record<string, unknown> {
|
||||
return {
|
||||
[this.queryType()]: {
|
||||
positive: this.positive.toDict(),
|
||||
negative: this.negative.toDict(),
|
||||
// biome-ignore lint/style/useNamingConvention: use underscore for consistency with the other APIs
|
||||
negative_boost: this.negativeBoost,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
export class MultiMatchQuery implements FullTextQuery {
|
||||
/** @ignore */
|
||||
public readonly inner: JsFullTextQuery;
|
||||
/**
|
||||
* Creates an instance of MultiMatchQuery.
|
||||
*
|
||||
* @param query - The text query to search for across multiple columns.
|
||||
* @param columns - An array of column names to search within.
|
||||
* @param boosts - (Optional) An array of boost factors corresponding to each column. Default is an array of 1.0 for each column.
|
||||
*
|
||||
* The `boosts` array should have the same length as `columns`. If not provided, all columns will have a default boost of 1.0.
|
||||
* If the length of `boosts` is less than `columns`, it will be padded with 1.0s.
|
||||
* @param options - Optional parameters for the multi-match query.
|
||||
* - `boosts`: An array of boost factors for each column (default is 1.0 for all).
|
||||
*/
|
||||
constructor(
|
||||
private query: string,
|
||||
private columns: string[],
|
||||
private boosts: number[] = columns.map(() => 1.0),
|
||||
) {}
|
||||
query: string,
|
||||
columns: string[],
|
||||
options?: {
|
||||
boosts?: number[];
|
||||
},
|
||||
) {
|
||||
this.inner = JsFullTextQuery.multiMatchQuery(
|
||||
query,
|
||||
columns,
|
||||
options?.boosts,
|
||||
);
|
||||
}
|
||||
|
||||
queryType(): FullTextQueryType {
|
||||
return FullTextQueryType.MultiMatch;
|
||||
}
|
||||
|
||||
toDict(): Record<string, unknown> {
|
||||
return {
|
||||
[this.queryType()]: {
|
||||
query: this.query,
|
||||
columns: this.columns,
|
||||
boost: this.boosts,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -22,7 +22,12 @@ import {
|
||||
OptimizeStats,
|
||||
Table as _NativeTable,
|
||||
} from "./native";
|
||||
import { Query, VectorQuery } from "./query";
|
||||
import {
|
||||
FullTextQuery,
|
||||
Query,
|
||||
VectorQuery,
|
||||
instanceOfFullTextQuery,
|
||||
} from "./query";
|
||||
import { sanitizeType } from "./sanitize";
|
||||
import { IntoSql, toSQL } from "./util";
|
||||
export { IndexConfig } from "./native";
|
||||
@@ -294,7 +299,7 @@ export abstract class Table {
|
||||
* if the query is a string and no embedding function is defined, it will be treated as a full text search query
|
||||
*/
|
||||
abstract search(
|
||||
query: string | IntoVector,
|
||||
query: string | IntoVector | FullTextQuery,
|
||||
queryType?: string,
|
||||
ftsColumns?: string | string[],
|
||||
): VectorQuery | Query;
|
||||
@@ -565,11 +570,11 @@ export class LocalTable extends Table {
|
||||
}
|
||||
|
||||
search(
|
||||
query: string | IntoVector,
|
||||
query: string | IntoVector | FullTextQuery,
|
||||
queryType: string = "auto",
|
||||
ftsColumns?: string | string[],
|
||||
): VectorQuery | Query {
|
||||
if (typeof query !== "string") {
|
||||
if (typeof query !== "string" && !instanceOfFullTextQuery(query)) {
|
||||
if (queryType === "fts") {
|
||||
throw new Error("Cannot perform full text search on a vector query");
|
||||
}
|
||||
@@ -585,7 +590,10 @@ export class LocalTable extends Table {
|
||||
|
||||
// The query type is auto or vector
|
||||
// fall back to full text search if no embedding functions are defined and the query is a string
|
||||
if (queryType === "auto" && getRegistry().length() === 0) {
|
||||
if (
|
||||
queryType === "auto" &&
|
||||
(getRegistry().length() === 0 || instanceOfFullTextQuery(query))
|
||||
) {
|
||||
return this.query().fullTextSearch(query, {
|
||||
columns: ftsColumns,
|
||||
});
|
||||
|
||||
@@ -3,7 +3,9 @@
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use lancedb::index::scalar::{FtsQuery, FullTextSearchQuery, MatchQuery, PhraseQuery};
|
||||
use lancedb::index::scalar::{
|
||||
BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, PhraseQuery,
|
||||
};
|
||||
use lancedb::query::ExecutableQuery;
|
||||
use lancedb::query::Query as LanceDbQuery;
|
||||
use lancedb::query::QueryBase;
|
||||
@@ -18,7 +20,7 @@ use crate::error::NapiErrorExt;
|
||||
use crate::iterator::RecordBatchIterator;
|
||||
use crate::rerankers::Reranker;
|
||||
use crate::rerankers::RerankerCallbacks;
|
||||
use crate::util::{parse_distance_type, parse_fts_query};
|
||||
use crate::util::parse_distance_type;
|
||||
|
||||
#[napi]
|
||||
pub struct Query {
|
||||
@@ -38,51 +40,8 @@ impl Query {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn full_text_search(&mut self, query: napi::JsUnknown) -> napi::Result<()> {
|
||||
let query = unsafe { query.cast::<napi::JsObject>() };
|
||||
let query = if let Some(query_text) = query.get::<_, String>("query").transpose() {
|
||||
let mut query_text = query_text?;
|
||||
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
|
||||
|
||||
let is_phrase =
|
||||
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
|
||||
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
|
||||
|
||||
if is_phrase {
|
||||
// Remove the surrounding quotes for phrase queries
|
||||
query_text = query_text[1..query_text.len() - 1].to_string();
|
||||
}
|
||||
|
||||
let query: FtsQuery = match (is_phrase, is_multi_match) {
|
||||
(false, _) => MatchQuery::new(query_text).into(),
|
||||
(true, false) => PhraseQuery::new(query_text).into(),
|
||||
(true, true) => {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Phrase queries cannot be used with multiple columns.",
|
||||
));
|
||||
}
|
||||
};
|
||||
let mut query = FullTextSearchQuery::new_query(query);
|
||||
if let Some(cols) = columns {
|
||||
if !cols.is_empty() {
|
||||
query = query.with_columns(&cols).map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to set full text search columns: {}",
|
||||
e
|
||||
))
|
||||
})?;
|
||||
}
|
||||
}
|
||||
query
|
||||
} else if let Some(query) = query.get::<_, napi::JsObject>("query")? {
|
||||
let query = parse_fts_query(&query)?;
|
||||
FullTextSearchQuery::new_query(query)
|
||||
} else {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Invalid full text search query object".to_string(),
|
||||
));
|
||||
};
|
||||
|
||||
pub fn full_text_search(&mut self, query: napi::JsObject) -> napi::Result<()> {
|
||||
let query = parse_fts_query(query)?;
|
||||
self.inner = self.inner.clone().full_text_search(query);
|
||||
Ok(())
|
||||
}
|
||||
@@ -243,51 +202,8 @@ impl VectorQuery {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn full_text_search(&mut self, query: napi::JsUnknown) -> napi::Result<()> {
|
||||
let query = unsafe { query.cast::<napi::JsObject>() };
|
||||
let query = if let Some(query_text) = query.get::<_, String>("query").transpose() {
|
||||
let mut query_text = query_text?;
|
||||
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
|
||||
|
||||
let is_phrase =
|
||||
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
|
||||
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
|
||||
|
||||
if is_phrase {
|
||||
// Remove the surrounding quotes for phrase queries
|
||||
query_text = query_text[1..query_text.len() - 1].to_string();
|
||||
}
|
||||
|
||||
let query: FtsQuery = match (is_phrase, is_multi_match) {
|
||||
(false, _) => MatchQuery::new(query_text).into(),
|
||||
(true, false) => PhraseQuery::new(query_text).into(),
|
||||
(true, true) => {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Phrase queries cannot be used with multiple columns.",
|
||||
));
|
||||
}
|
||||
};
|
||||
let mut query = FullTextSearchQuery::new_query(query);
|
||||
if let Some(cols) = columns {
|
||||
if !cols.is_empty() {
|
||||
query = query.with_columns(&cols).map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to set full text search columns: {}",
|
||||
e
|
||||
))
|
||||
})?;
|
||||
}
|
||||
}
|
||||
query
|
||||
} else if let Some(query) = query.get::<_, napi::JsObject>("query")? {
|
||||
let query = parse_fts_query(&query)?;
|
||||
FullTextSearchQuery::new_query(query)
|
||||
} else {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Invalid full text search query object".to_string(),
|
||||
));
|
||||
};
|
||||
|
||||
pub fn full_text_search(&mut self, query: napi::JsObject) -> napi::Result<()> {
|
||||
let query = parse_fts_query(query)?;
|
||||
self.inner = self.inner.clone().full_text_search(query);
|
||||
Ok(())
|
||||
}
|
||||
@@ -376,3 +292,118 @@ impl VectorQuery {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct JsFullTextQuery {
|
||||
pub(crate) inner: FtsQuery,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl JsFullTextQuery {
|
||||
#[napi(factory)]
|
||||
pub fn match_query(
|
||||
query: String,
|
||||
column: String,
|
||||
boost: f64,
|
||||
fuzziness: Option<u32>,
|
||||
max_expansions: u32,
|
||||
) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: MatchQuery::new(query)
|
||||
.with_column(Some(column))
|
||||
.with_boost(boost as f32)
|
||||
.with_fuzziness(fuzziness)
|
||||
.with_max_expansions(max_expansions as usize)
|
||||
.into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn phrase_query(query: String, column: String) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: PhraseQuery::new(query).with_column(Some(column)).into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn boost_query(
|
||||
positive: &JsFullTextQuery,
|
||||
negative: &JsFullTextQuery,
|
||||
negative_boost: Option<f64>,
|
||||
) -> napi::Result<Self> {
|
||||
Ok(Self {
|
||||
inner: BoostQuery::new(
|
||||
positive.inner.clone(),
|
||||
negative.inner.clone(),
|
||||
negative_boost.map(|v| v as f32),
|
||||
)
|
||||
.into(),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi(factory)]
|
||||
pub fn multi_match_query(
|
||||
query: String,
|
||||
columns: Vec<String>,
|
||||
boosts: Option<Vec<f64>>,
|
||||
) -> napi::Result<Self> {
|
||||
let q = match boosts {
|
||||
Some(boosts) => MultiMatchQuery::try_new_with_boosts(
|
||||
query,
|
||||
columns,
|
||||
boosts.into_iter().map(|v| v as f32).collect(),
|
||||
),
|
||||
None => MultiMatchQuery::try_new(query, columns),
|
||||
}
|
||||
.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to create multi match query: {}", e))
|
||||
})?;
|
||||
|
||||
Ok(Self { inner: q.into() })
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_fts_query(query: napi::JsObject) -> napi::Result<FullTextSearchQuery> {
|
||||
if let Ok(Some(query)) = query.get::<_, &JsFullTextQuery>("query") {
|
||||
Ok(FullTextSearchQuery::new_query(query.inner.clone()))
|
||||
} else if let Ok(Some(query_text)) = query.get::<_, String>("query") {
|
||||
let mut query_text = query_text;
|
||||
let columns = query.get::<_, Option<Vec<String>>>("columns")?.flatten();
|
||||
|
||||
let is_phrase =
|
||||
query_text.len() >= 2 && query_text.starts_with('"') && query_text.ends_with('"');
|
||||
let is_multi_match = columns.as_ref().map(|cols| cols.len() > 1).unwrap_or(false);
|
||||
|
||||
if is_phrase {
|
||||
// Remove the surrounding quotes for phrase queries
|
||||
query_text = query_text[1..query_text.len() - 1].to_string();
|
||||
}
|
||||
|
||||
let query: FtsQuery = match (is_phrase, is_multi_match) {
|
||||
(false, _) => MatchQuery::new(query_text).into(),
|
||||
(true, false) => PhraseQuery::new(query_text).into(),
|
||||
(true, true) => {
|
||||
return Err(napi::Error::from_reason(
|
||||
"Phrase queries cannot be used with multiple columns.",
|
||||
));
|
||||
}
|
||||
};
|
||||
let mut query = FullTextSearchQuery::new_query(query);
|
||||
if let Some(cols) = columns {
|
||||
if !cols.is_empty() {
|
||||
query = query.with_columns(&cols).map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to set full text search columns: {}",
|
||||
e
|
||||
))
|
||||
})?;
|
||||
}
|
||||
}
|
||||
Ok(query)
|
||||
} else {
|
||||
Err(napi::Error::from_reason(
|
||||
"Invalid full text search query object".to_string(),
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
use lancedb::index::scalar::{BoostQuery, FtsQuery, MatchQuery, MultiMatchQuery, PhraseQuery};
|
||||
use lancedb::DistanceType;
|
||||
|
||||
pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<DistanceType> {
|
||||
@@ -16,144 +15,3 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<Dista
|
||||
))),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn parse_fts_query(query: &napi::JsObject) -> napi::Result<FtsQuery> {
|
||||
let query_type = query
|
||||
.get_property_names()?
|
||||
.get_element::<napi::JsString>(0)?;
|
||||
let query_type = query_type.into_utf8()?.into_owned()?;
|
||||
let query_value =
|
||||
query
|
||||
.get::<_, napi::JsObject>(&query_type)?
|
||||
.ok_or(napi::Error::from_reason(format!(
|
||||
"query value {} not found",
|
||||
query_type
|
||||
)))?;
|
||||
|
||||
match query_type.as_str() {
|
||||
"match" => {
|
||||
let column = query_value
|
||||
.get_property_names()?
|
||||
.get_element::<napi::JsString>(0)?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
let params =
|
||||
query_value
|
||||
.get::<_, napi::JsObject>(&column)?
|
||||
.ok_or(napi::Error::from_reason(format!(
|
||||
"column {} not found",
|
||||
column
|
||||
)))?;
|
||||
|
||||
let query = params
|
||||
.get::<_, napi::JsString>("query")?
|
||||
.ok_or(napi::Error::from_reason("query not found"))?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
let boost = params
|
||||
.get::<_, napi::JsNumber>("boost")?
|
||||
.ok_or(napi::Error::from_reason("boost not found"))?
|
||||
.get_double()? as f32;
|
||||
let fuzziness = params
|
||||
.get::<_, napi::JsNumber>("fuzziness")?
|
||||
.map(|f| f.get_uint32())
|
||||
.transpose()?;
|
||||
let max_expansions = params
|
||||
.get::<_, napi::JsNumber>("max_expansions")?
|
||||
.ok_or(napi::Error::from_reason("max_expansions not found"))?
|
||||
.get_uint32()? as usize;
|
||||
|
||||
let query = MatchQuery::new(query)
|
||||
.with_column(Some(column))
|
||||
.with_boost(boost)
|
||||
.with_fuzziness(fuzziness)
|
||||
.with_max_expansions(max_expansions);
|
||||
Ok(query.into())
|
||||
}
|
||||
|
||||
"match_phrase" => {
|
||||
let column = query_value
|
||||
.get_property_names()?
|
||||
.get_element::<napi::JsString>(0)?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
let query = query_value
|
||||
.get::<_, napi::JsString>(&column)?
|
||||
.ok_or(napi::Error::from_reason(format!(
|
||||
"column {} not found",
|
||||
column
|
||||
)))?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
|
||||
let query = PhraseQuery::new(query).with_column(Some(column));
|
||||
Ok(query.into())
|
||||
}
|
||||
|
||||
"boost" => {
|
||||
let positive = query_value
|
||||
.get::<_, napi::JsObject>("positive")?
|
||||
.ok_or(napi::Error::from_reason("positive not found"))?;
|
||||
|
||||
let negative = query_value
|
||||
.get::<_, napi::JsObject>("negative")?
|
||||
.ok_or(napi::Error::from_reason("negative not found"))?;
|
||||
let negative_boost = query_value
|
||||
.get::<_, napi::JsNumber>("negative_boost")?
|
||||
.ok_or(napi::Error::from_reason("negative_boost not found"))?
|
||||
.get_double()? as f32;
|
||||
|
||||
let positive = parse_fts_query(&positive)?;
|
||||
let negative = parse_fts_query(&negative)?;
|
||||
let query = BoostQuery::new(positive, negative, Some(negative_boost));
|
||||
Ok(query.into())
|
||||
}
|
||||
|
||||
"multi_match" => {
|
||||
let query = query_value
|
||||
.get::<_, napi::JsString>("query")?
|
||||
.ok_or(napi::Error::from_reason("query not found"))?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
let columns_array = query_value
|
||||
.get::<_, napi::JsTypedArray>("columns")?
|
||||
.ok_or(napi::Error::from_reason("columns not found"))?;
|
||||
let columns_num = columns_array.get_array_length()?;
|
||||
let mut columns = Vec::with_capacity(columns_num as usize);
|
||||
for i in 0..columns_num {
|
||||
let column = columns_array
|
||||
.get_element::<napi::JsString>(i)?
|
||||
.into_utf8()?
|
||||
.into_owned()?;
|
||||
columns.push(column);
|
||||
}
|
||||
let boost_array = query_value
|
||||
.get::<_, napi::JsTypedArray>("boost")?
|
||||
.ok_or(napi::Error::from_reason("boost not found"))?;
|
||||
if boost_array.get_array_length()? != columns_num {
|
||||
return Err(napi::Error::from_reason(format!(
|
||||
"boost array length ({}) does not match columns length ({})",
|
||||
boost_array.get_array_length()?,
|
||||
columns_num
|
||||
)));
|
||||
}
|
||||
let mut boost = Vec::with_capacity(columns_num as usize);
|
||||
for i in 0..columns_num {
|
||||
let b = boost_array.get_element::<napi::JsNumber>(i)?.get_double()? as f32;
|
||||
boost.push(b);
|
||||
}
|
||||
|
||||
let query =
|
||||
MultiMatchQuery::try_new_with_boosts(query, columns, boost).map_err(|e| {
|
||||
napi::Error::from_reason(format!("Error creating MultiMatchQuery: {}", e))
|
||||
})?;
|
||||
|
||||
Ok(query.into())
|
||||
}
|
||||
|
||||
_ => Err(napi::Error::from_reason(format!(
|
||||
"Unsupported query type: {}",
|
||||
query_type
|
||||
))),
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user