mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-04 02:42:57 +00:00
fix: bugs for new FTS APIs (#2314)
<!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit - **New Features** - Enhanced full-text search capabilities with support for phrase queries, fuzzy matching, boosting, and multi-column matching. - Search methods now accept full-text query objects directly, improving query flexibility and precision. - Python and JavaScript SDKs updated to handle full-text queries seamlessly, including async search support. - **Tests** - Added comprehensive tests covering fuzzy search, phrase search, and boosted queries to ensure robust full-text search functionality. - **Documentation** - Updated query class documentation to reflect new constructor options and removal of deprecated methods for clarity and simplicity. <!-- end of auto-generated comment: release notes by coderabbit.ai --> --------- Signed-off-by: BubbleCal <bubble-cal@outlook.com>
This commit is contained in:
@@ -266,8 +266,8 @@ class MultiMatchQuery(FullTextQuery):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str | list[Query]
|
||||
If a string, the query string to match against.
|
||||
query : str
|
||||
The query string to match against.
|
||||
|
||||
columns : list[str]
|
||||
The list of columns to match against.
|
||||
|
||||
@@ -2141,6 +2141,8 @@ class LanceTable(Table):
|
||||
and also the "_distance" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
"""
|
||||
if isinstance(query, FullTextQuery):
|
||||
query_type = "fts"
|
||||
vector_column_name = infer_vector_column_name(
|
||||
schema=self.schema,
|
||||
query_type=query_type,
|
||||
@@ -3223,8 +3225,10 @@ class AsyncTable:
|
||||
async def get_embedding_func(
|
||||
vector_column_name: Optional[str],
|
||||
query_type: QueryType,
|
||||
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]],
|
||||
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple, FullTextQuery]],
|
||||
) -> Tuple[str, EmbeddingFunctionConfig]:
|
||||
if isinstance(query, FullTextQuery):
|
||||
query_type = "fts"
|
||||
schema = await self.schema()
|
||||
vector_column_name = infer_vector_column_name(
|
||||
schema=schema,
|
||||
|
||||
@@ -253,9 +253,14 @@ def infer_vector_column_name(
|
||||
query: Optional[Any], # inferred later in query builder
|
||||
vector_column_name: Optional[str],
|
||||
):
|
||||
if (vector_column_name is None and query is not None and query_type != "fts") or (
|
||||
vector_column_name is None and query_type == "hybrid"
|
||||
):
|
||||
if vector_column_name is not None:
|
||||
return vector_column_name
|
||||
|
||||
if query_type == "fts":
|
||||
# FTS queries do not require a vector column
|
||||
return None
|
||||
|
||||
if query is not None or query_type == "hybrid":
|
||||
try:
|
||||
vector_column_name = inf_vector_column_query(schema)
|
||||
except Exception as e:
|
||||
|
||||
@@ -6,7 +6,9 @@ import lancedb
|
||||
|
||||
# --8<-- [end:import-lancedb]
|
||||
# --8<-- [start:import-numpy]
|
||||
from lancedb.query import BoostQuery, MatchQuery
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
|
||||
# --8<-- [end:import-numpy]
|
||||
# --8<-- [start:import-datetime]
|
||||
@@ -154,6 +156,84 @@ async def test_vector_search_async():
|
||||
# --8<-- [end:search_result_async_as_list]
|
||||
|
||||
|
||||
def test_fts_fuzzy_query():
|
||||
uri = "data/fuzzy-example"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
table = db.create_table(
|
||||
"my_table_fts_fuzzy",
|
||||
data=pa.table(
|
||||
{
|
||||
"text": [
|
||||
"fa",
|
||||
"fo", # spellchecker:disable-line
|
||||
"fob",
|
||||
"focus",
|
||||
"foo",
|
||||
"food",
|
||||
"foul",
|
||||
]
|
||||
}
|
||||
),
|
||||
mode="overwrite",
|
||||
)
|
||||
table.create_fts_index("text", use_tantivy=False, replace=True)
|
||||
|
||||
results = table.search(MatchQuery("foo", "text", fuzziness=1)).to_pandas()
|
||||
assert len(results) == 4
|
||||
assert set(results["text"].to_list()) == {
|
||||
"foo",
|
||||
"fo", # 1 deletion # spellchecker:disable-line
|
||||
"fob", # 1 substitution
|
||||
"food", # 1 insertion
|
||||
}
|
||||
|
||||
|
||||
def test_fts_boost_query():
|
||||
uri = "data/boost-example"
|
||||
db = lancedb.connect(uri)
|
||||
|
||||
table = db.create_table(
|
||||
"my_table_fts_boost",
|
||||
data=pa.table(
|
||||
{
|
||||
"title": [
|
||||
"The Hidden Gems of Travel",
|
||||
"Exploring Nature's Wonders",
|
||||
"Cultural Treasures Unveiled",
|
||||
"The Nightlife Chronicles",
|
||||
"Scenic Escapes and Challenges",
|
||||
],
|
||||
"desc": [
|
||||
"A vibrant city with occasional traffic jams.",
|
||||
"Beautiful landscapes but overpriced tourist spots.",
|
||||
"Rich cultural heritage but humid summers.",
|
||||
"Bustling nightlife but noisy streets.",
|
||||
"Scenic views but limited public transport options.",
|
||||
],
|
||||
}
|
||||
),
|
||||
mode="overwrite",
|
||||
)
|
||||
table.create_fts_index("desc", use_tantivy=False, replace=True)
|
||||
|
||||
results = table.search(
|
||||
BoostQuery(
|
||||
MatchQuery("beautiful, cultural, nightlife", "desc"),
|
||||
MatchQuery("bad traffic jams, overpriced", "desc"),
|
||||
),
|
||||
).to_pandas()
|
||||
|
||||
# we will hit 3 results because the positive query has 3 hits
|
||||
assert len(results) == 3
|
||||
# the one containing "overpriced" will be negatively boosted,
|
||||
# so it will be the last one
|
||||
assert (
|
||||
results["desc"].to_list()[2]
|
||||
== "Beautiful landscapes but overpriced tourist spots."
|
||||
)
|
||||
|
||||
|
||||
def test_fts_native():
|
||||
# --8<-- [start:basic_fts]
|
||||
uri = "data/sample-lancedb"
|
||||
|
||||
Reference in New Issue
Block a user