feat(python): Add gemini text embedding function (#806)

Named it Gemini-text for now. Not sure how complicated it will be to
support both text and multimodal embeddings under the same class
"gemini"..But its not something to worry about for now I guess.
This commit is contained in:
Ayush Chaurasia
2024-01-13 12:08:55 +05:30
committed by Weston Pace
parent f0a654036e
commit 2f72d5138e
4 changed files with 187 additions and 2 deletions

View File

@@ -19,4 +19,5 @@ from .open_clip import OpenClipEmbeddings
from .openai import OpenAIEmbeddings
from .registry import EmbeddingFunctionRegistry, get_registry
from .sentence_transformers import SentenceTransformerEmbeddings
from .gemini_text import GeminiText
from .utils import with_embeddings

View File

@@ -0,0 +1,128 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import cached_property
from typing import List, Union, Any
import numpy as np
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help, TEXT
@register("gemini-text")
class GeminiText(TextEmbeddingFunction):
"""
An embedding function that uses the Google's Gemini API. Requires GOOGLE_API_KEY to be set.
https://ai.google.dev/docs/embeddings_guide
Supports various tasks types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Note: The supported task types might change in the Gemini API, but as long as a supported task type and its argument set is provided,
those will be delegated to the API calls.
Parameters
----------
name: str, default "models/embedding-001"
The name of the model to use. See the Gemini documentation for a list of available models.
query_task_type: str, default "retrieval_query"
Sets the task type for the queries.
source_task_type: str, default "retrieval_document"
Sets the task type for ingestion.
Examples
--------
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
"""
name: str = "models/embedding-001"
query_task_type: str = "retrieval_query"
source_task_type: str = "retrieval_document"
class Config: # Pydantic 1.x compat
keep_untouched = (cached_property,)
def ndims(self):
# TODO: fix hardcoding
return 768
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, task_type=self.query_task_type)
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
task_type = (
kwargs.get("task_type") or self.source_task_type
) # assume source task type if not passed by `compute_query_embeddings`
return self.generate_embeddings(texts, task_type=task_type)
def generate_embeddings(
self, texts: Union[List[str], np.ndarray], *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
if (
kwargs.get("task_type") == "retrieval_document"
): # Provide a title to use existing API design
title = "Embedding of a document"
kwargs["title"] = title
return [
self.client.embed_content(model=self.name, content=text, **kwargs)[
"embedding"
]
for text in texts
]
@cached_property
def client(self):
genai = self.safe_import("google.generativeai", "google.generativeai")
if not os.environ.get("GOOGLE_API_KEY"):
raise ValueError(api_key_not_found_help("google"))
return genai

View File

@@ -89,7 +89,7 @@ def test_openclip(tmp_path):
db = lancedb.connect(tmp_path)
registry = get_registry()
func = registry.get("open-clip").create()
func = registry.get("open-clip").create(max_retries=0)
class Images(LanceModel):
label: str
@@ -170,7 +170,7 @@ def test_cohere_embedding_function():
@pytest.mark.slow
def test_instructor_embedding(tmp_path):
model = get_registry().get("instructor").create()
model = get_registry().get("instructor").create(max_retries=0)
class TextModel(LanceModel):
text: str = model.SourceField()
@@ -182,3 +182,23 @@ def test_instructor_embedding(tmp_path):
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("GOOGLE_API_KEY") is None, reason="GOOGLE_API_KEY not set"
)
def test_gemini_embedding(tmp_path):
model = get_registry().get("gemini-text").create(max_retries=0)
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"