docs(nodejs): add @lancedb/lancedb examples everywhere (#1411)

Co-authored-by: Will Jones <willjones127@gmail.com>
This commit is contained in:
Cory Grinstead
2024-07-10 13:29:03 -05:00
committed by GitHub
parent cef24801f4
commit 31be9212da
24 changed files with 1631 additions and 449 deletions

1
nodejs/examples/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
data/

View File

@@ -0,0 +1,49 @@
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
// --8<-- [end:import]
// --8<-- [start:ingest]
const db = await lancedb.connect("/tmp/lancedb/");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
const table = await db.createTable("my_vectors", data, { mode: "overwrite" });
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 16,
numSubVectors: 48,
}),
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const _results1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.toArray();
// --8<-- [end:search2]
// --8<-- [start:search3]
const _results3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.toArray();
// --8<-- [end:search3]
console.log("Ann indexes: done");

149
nodejs/examples/basic.ts Normal file
View File

@@ -0,0 +1,149 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
import { Field, FixedSizeList, Float16, Int32, Schema } from "apache-arrow";
// --8<-- [end:imports]
// --8<-- [start:connect]
const uri = "/tmp/lancedb/";
const db = await lancedb.connect(uri);
// --8<-- [end:connect]
{
// --8<-- [start:create_table]
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data);
// --8<-- [end:create_table]
{
// --8<-- [start:create_table_exists_ok]
const _tbl = await db.createTable("myTable", data, {
existsOk: true,
});
// --8<-- [end:create_table_exists_ok]
}
{
// --8<-- [start:create_table_overwrite]
const _tbl = await db.createTable("myTable", data, {
mode: "overwrite",
});
// --8<-- [end:create_table_overwrite]
}
}
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const _tbl = await db.createTable("myTable", data, {
schema,
});
// --8<-- [end:create_table_with_schema]
}
{
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
]);
const _tbl = await db.createEmptyTable("empty_table", schema);
// --8<-- [end:create_empty_table]
}
{
// --8<-- [start:open_table]
const _tbl = await db.openTable("myTable");
// --8<-- [end:open_table]
}
{
// --8<-- [start:table_names]
const tableNames = await db.tableNames();
console.log(tableNames);
// --8<-- [end:table_names]
}
const tbl = await db.openTable("myTable");
{
// --8<-- [start:add_data]
const data = [
{ vector: [1.3, 1.4], item: "fizz", price: 100.0 },
{ vector: [9.5, 56.2], item: "buzz", price: 200.0 },
];
await tbl.add(data);
// --8<-- [end:add_data]
}
{
// --8<-- [start:vector_search]
const _res = tbl.search([100, 100]).limit(2).toArray();
// --8<-- [end:vector_search]
}
{
const data = Array.from({ length: 1000 })
.fill(null)
.map(() => ({
vector: [Math.random(), Math.random()],
item: "autogen",
price: Math.round(Math.random() * 100),
}));
await tbl.add(data);
}
// --8<-- [start:create_index]
await tbl.createIndex("vector");
// --8<-- [end:create_index]
// --8<-- [start:delete_rows]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete_rows]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
await db.dropTable("empty_table");
{
// --8<-- [start:create_f16_table]
const db = await lancedb.connect("/tmp/lancedb");
const dim = 16;
const total = 10;
const f16Schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema: f16Schema },
);
const _table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
await db.dropTable("f16_tbl");
}

View File

@@ -0,0 +1,83 @@
// --8<-- [start:imports]
import * as lancedb from "@lancedb/lancedb";
import { LanceSchema, getRegistry, register } from "@lancedb/lancedb/embedding";
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
import { type Float, Float32, Utf8 } from "apache-arrow";
// --8<-- [end:imports]
{
// --8<-- [start:openai_embeddings]
const db = await lancedb.connect("/tmp/db");
const func = getRegistry()
.get("openai")
?.create({ model: "text-embedding-ada-002" }) as EmbeddingFunction;
const wordsSchema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const tbl = await db.createEmptyTable("words", wordsSchema, {
mode: "overwrite",
});
await tbl.add([{ text: "hello world" }, { text: "goodbye world" }]);
const query = "greetings";
const actual = (await (await tbl.search(query)).limit(1).toArray())[0];
// --8<-- [end:openai_embeddings]
console.log("result = ", actual.text);
}
{
// --8<-- [start:embedding_function]
const db = await lancedb.connect("/tmp/db");
@register("my_embedding")
class MyEmbeddingFunction extends EmbeddingFunction<string> {
toJSON(): object {
return {};
}
ndims() {
return 3;
}
embeddingDataType(): Float {
return new Float32();
}
async computeQueryEmbeddings(_data: string) {
// This is a placeholder for a real embedding function
return [1, 2, 3];
}
async computeSourceEmbeddings(data: string[]) {
// This is a placeholder for a real embedding function
return Array.from({ length: data.length }).fill([1, 2, 3]) as number[][];
}
}
const func = new MyEmbeddingFunction();
const data = [{ text: "pepperoni" }, { text: "pineapple" }];
// Option 1: manually specify the embedding function
const table = await db.createTable("vectors", data, {
embeddingFunction: {
function: func,
sourceColumn: "text",
vectorColumn: "vector",
},
mode: "overwrite",
});
// Option 2: provide the embedding function through a schema
const schema = LanceSchema({
text: func.sourceField(new Utf8()),
vector: func.vectorField(),
});
const table2 = await db.createTable("vectors2", data, {
schema,
mode: "overwrite",
});
// --8<-- [end:embedding_function]
}

View File

@@ -0,0 +1,34 @@
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
}));
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
// --8<-- [start:search]
const _result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.where("id = 10")
.toArray();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.postfilter()
.toArray();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.query().where("id = 10").limit(10).toArray();
// --8<-- [end:sql_search]
console.log("SQL search: done");

View File

@@ -0,0 +1,27 @@
{
"compilerOptions": {
// Enable latest features
"lib": ["ESNext", "DOM"],
"target": "ESNext",
"module": "ESNext",
"moduleDetection": "force",
"jsx": "react-jsx",
"allowJs": true,
// Bundler mode
"moduleResolution": "bundler",
"allowImportingTsExtensions": true,
"verbatimModuleSyntax": true,
"noEmit": true,
// Best practices
"strict": true,
"skipLibCheck": true,
"noFallthroughCasesInSwitch": true,
// Some stricter flags (disabled by default)
"noUnusedLocals": false,
"noUnusedParameters": false,
"noPropertyAccessFromIndexSignature": false
}
}

79
nodejs/examples/package-lock.json generated Normal file
View File

@@ -0,0 +1,79 @@
{
"name": "examples",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "examples",
"version": "1.0.0",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../"
},
"peerDependencies": {
"typescript": "^5.0.0"
}
},
"..": {
"name": "@lancedb/lancedb",
"version": "0.6.0",
"cpu": [
"x64",
"arm64"
],
"license": "Apache 2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"apache-arrow": "^15.0.0",
"axios": "^1.7.2",
"openai": "^4.29.2",
"reflect-metadata": "^0.2.2"
},
"devDependencies": {
"@aws-sdk/client-kms": "^3.33.0",
"@aws-sdk/client-s3": "^3.33.0",
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"@napi-rs/cli": "^2.18.0",
"@types/axios": "^0.14.0",
"@types/jest": "^29.1.2",
"@types/tmp": "^0.2.6",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"eslint": "^8.57.0",
"jest": "^29.7.0",
"shx": "^0.3.4",
"tmp": "^0.2.3",
"ts-jest": "^29.1.2",
"typedoc": "^0.25.7",
"typedoc-plugin-markdown": "^3.17.1",
"typescript": "^5.3.3",
"typescript-eslint": "^7.1.0"
},
"engines": {
"node": ">= 18"
}
},
"node_modules/@lancedb/lancedb": {
"resolved": "..",
"link": true
},
"node_modules/typescript": {
"version": "5.5.2",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.2.tgz",
"integrity": "sha512-NcRtPEOsPFFWjobJEtfihkLCZCXZt/os3zf8nTxjVH3RvTSxjrCamJpbExGvYOF+tFHc3pA65qpdwPbzjohhew==",
"peer": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
}
}
}

View File

@@ -0,0 +1,18 @@
{
"name": "examples",
"version": "1.0.0",
"description": "Examples for LanceDB",
"main": "index.js",
"type": "module",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "Lance Devs",
"license": "Apache-2.0",
"dependencies": {
"@lancedb/lancedb": "file:../"
},
"peerDependencies": {
"typescript": "^5.0.0"
}
}

37
nodejs/examples/search.ts Normal file
View File

@@ -0,0 +1,37 @@
// --8<-- [end:import]
import * as fs from "node:fs";
// --8<-- [start:import]
import * as lancedb from "@lancedb/lancedb";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
const data = Array.from({ length: 10_000 }, (_, i) => ({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
}));
await db.createTable("my_vectors", data);
}
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const _results1 = await tbl.search(Array(1536).fill(1.2)).limit(10).toArray();
// --8<-- [end:search1]
// --8<-- [start:search2]
const _results2 = await tbl
.search(Array(1536).fill(1.2))
.distanceType("cosine")
.limit(10)
.toArray();
// --8<-- [end:search2]
console.log("search: done");