multi-modal embedding-function (#484)

This commit is contained in:
Chang She
2023-09-16 21:23:51 -04:00
committed by GitHub
parent 9585f550b3
commit 31dad71c94
13 changed files with 645 additions and 143 deletions

View File

@@ -16,8 +16,12 @@ import lance
import numpy as np
import pyarrow as pa
from lancedb.conftest import MockEmbeddingFunction
from lancedb.embeddings import EmbeddingFunctionRegistry, with_embeddings
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.embeddings import (
EmbeddingFunctionConfig,
EmbeddingFunctionRegistry,
with_embeddings,
)
def mock_embed_func(input_data):
@@ -54,8 +58,12 @@ def test_embedding_function(tmp_path):
"vector": [np.random.randn(10), np.random.randn(10)],
}
)
func = MockEmbeddingFunction(source_column="text", vector_column="vector")
metadata = registry.get_table_metadata([func])
conf = EmbeddingFunctionConfig(
source_column="text",
vector_column="vector",
function=MockTextEmbeddingFunction(),
)
metadata = registry.get_table_metadata([conf])
table = table.replace_schema_metadata(metadata)
# Write it to disk
@@ -65,14 +73,13 @@ def test_embedding_function(tmp_path):
ds = lance.dataset(tmp_path / "test.lance")
# can we get the serialized version back out?
functions = registry.parse_functions(ds.schema.metadata)
configs = registry.parse_functions(ds.schema.metadata)
func = functions["vector"]
actual = func("hello world")
conf = configs["vector"]
func = conf.function
actual = func.compute_query_embeddings("hello world")
# We create an instance
expected_func = MockEmbeddingFunction(source_column="text", vector_column="vector")
# And we make sure we can call it
expected = expected_func("hello world")
expected = func.compute_query_embeddings("hello world")
assert np.allclose(actual, expected)

View File

@@ -0,0 +1,125 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import numpy as np
import pandas as pd
import pytest
import requests
import lancedb
from lancedb.embeddings import EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector
# These are integration tests for embedding functions.
# They are slow because they require downloading models
# or connection to external api
@pytest.mark.slow
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
def test_sentence_transformer(alias, tmp_path):
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get(alias).create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
pd.DataFrame(
{
"text": [
"hello world",
"goodbye world",
"fizz",
"buzz",
"foo",
"bar",
"baz",
]
}
)
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
vec = func.compute_query_embeddings(query)[0]
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
assert actual.text == expected.text
assert actual.text == "hello world"
@pytest.mark.slow
def test_openclip(tmp_path):
from PIL import Image
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField()
image_bytes: bytes = func.SourceField()
vector: Vector(func.ndims) = func.VectorField()
vec_from_bytes: Vector(func.ndims) = func.VectorField()
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == frombytes.label
assert np.allclose(actual.vector, frombytes.vector)
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == other.label
arrow_table = table.search().select(["vector", "vec_from_bytes"]).to_arrow()
assert np.allclose(
arrow_table["vector"].combine_chunks().values.to_numpy(),
arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(),
)

View File

@@ -22,8 +22,9 @@ import pandas as pd
import pyarrow as pa
import pytest
from lancedb.conftest import MockEmbeddingFunction
from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector
from lancedb.table import LanceTable
@@ -356,20 +357,23 @@ def test_create_with_embedding_function(db):
text: str
vector: Vector(10)
func = MockEmbeddingFunction(source_column="text", vector_column="vector")
func = MockTextEmbeddingFunction()
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts, "vector": func(texts)})
df = pd.DataFrame({"text": texts, "vector": func.compute_source_embeddings(texts)})
conf = EmbeddingFunctionConfig(
source_column="text", vector_column="vector", function=func
)
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
embedding_functions=[func],
embedding_functions=[conf],
)
table.add(df)
query_str = "hi how are you?"
query_vector = func(query_str)[0]
query_vector = func.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow()
@@ -377,17 +381,13 @@ def test_create_with_embedding_function(db):
def test_add_with_embedding_function(db):
class MyTable(LanceModel):
text: str
vector: Vector(10)
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
func = MockEmbeddingFunction(source_column="text", vector_column="vector")
table = LanceTable.create(
db,
"my_table",
schema=MyTable,
embedding_functions=[func],
)
class MyTable(LanceModel):
text: str = emb.SourceField()
vector: Vector(emb.ndims) = emb.VectorField()
table = LanceTable.create(db, "my_table", schema=MyTable)
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts})
@@ -397,7 +397,7 @@ def test_add_with_embedding_function(db):
table.add([{"text": t} for t in texts])
query_str = "hi how are you?"
query_vector = func(query_str)[0]
query_vector = emb.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow()