mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-05 19:32:56 +00:00
multi-modal embedding-function (#484)
This commit is contained in:
@@ -16,8 +16,12 @@ import lance
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
|
||||
from lancedb.conftest import MockEmbeddingFunction
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry, with_embeddings
|
||||
from lancedb.conftest import MockTextEmbeddingFunction
|
||||
from lancedb.embeddings import (
|
||||
EmbeddingFunctionConfig,
|
||||
EmbeddingFunctionRegistry,
|
||||
with_embeddings,
|
||||
)
|
||||
|
||||
|
||||
def mock_embed_func(input_data):
|
||||
@@ -54,8 +58,12 @@ def test_embedding_function(tmp_path):
|
||||
"vector": [np.random.randn(10), np.random.randn(10)],
|
||||
}
|
||||
)
|
||||
func = MockEmbeddingFunction(source_column="text", vector_column="vector")
|
||||
metadata = registry.get_table_metadata([func])
|
||||
conf = EmbeddingFunctionConfig(
|
||||
source_column="text",
|
||||
vector_column="vector",
|
||||
function=MockTextEmbeddingFunction(),
|
||||
)
|
||||
metadata = registry.get_table_metadata([conf])
|
||||
table = table.replace_schema_metadata(metadata)
|
||||
|
||||
# Write it to disk
|
||||
@@ -65,14 +73,13 @@ def test_embedding_function(tmp_path):
|
||||
ds = lance.dataset(tmp_path / "test.lance")
|
||||
|
||||
# can we get the serialized version back out?
|
||||
functions = registry.parse_functions(ds.schema.metadata)
|
||||
configs = registry.parse_functions(ds.schema.metadata)
|
||||
|
||||
func = functions["vector"]
|
||||
actual = func("hello world")
|
||||
conf = configs["vector"]
|
||||
func = conf.function
|
||||
actual = func.compute_query_embeddings("hello world")
|
||||
|
||||
# We create an instance
|
||||
expected_func = MockEmbeddingFunction(source_column="text", vector_column="vector")
|
||||
# And we make sure we can call it
|
||||
expected = expected_func("hello world")
|
||||
expected = func.compute_query_embeddings("hello world")
|
||||
|
||||
assert np.allclose(actual, expected)
|
||||
|
||||
125
python/tests/test_embeddings_slow.py
Normal file
125
python/tests/test_embeddings_slow.py
Normal file
@@ -0,0 +1,125 @@
|
||||
# Copyright (c) 2023. LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import io
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
import requests
|
||||
|
||||
import lancedb
|
||||
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
# These are integration tests for embedding functions.
|
||||
# They are slow because they require downloading models
|
||||
# or connection to external api
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
|
||||
def test_sentence_transformer(alias, tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
func = registry.get(alias).create()
|
||||
|
||||
class Words(LanceModel):
|
||||
text: str = func.SourceField()
|
||||
vector: Vector(func.ndims) = func.VectorField()
|
||||
|
||||
table = db.create_table("words", schema=Words)
|
||||
table.add(
|
||||
pd.DataFrame(
|
||||
{
|
||||
"text": [
|
||||
"hello world",
|
||||
"goodbye world",
|
||||
"fizz",
|
||||
"buzz",
|
||||
"foo",
|
||||
"bar",
|
||||
"baz",
|
||||
]
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
|
||||
vec = func.compute_query_embeddings(query)[0]
|
||||
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
|
||||
assert actual.text == expected.text
|
||||
assert actual.text == "hello world"
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
def test_openclip(tmp_path):
|
||||
from PIL import Image
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
func = registry.get("open-clip").create()
|
||||
|
||||
class Images(LanceModel):
|
||||
label: str
|
||||
image_uri: str = func.SourceField()
|
||||
image_bytes: bytes = func.SourceField()
|
||||
vector: Vector(func.ndims) = func.VectorField()
|
||||
vec_from_bytes: Vector(func.ndims) = func.VectorField()
|
||||
|
||||
table = db.create_table("images", schema=Images)
|
||||
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||
]
|
||||
# get each uri as bytes
|
||||
image_bytes = [requests.get(uri).content for uri in uris]
|
||||
table.add(
|
||||
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
||||
)
|
||||
|
||||
# text search
|
||||
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
|
||||
assert actual.label == "dog"
|
||||
frombytes = (
|
||||
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
assert actual.label == frombytes.label
|
||||
assert np.allclose(actual.vector, frombytes.vector)
|
||||
|
||||
# image search
|
||||
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
||||
image_bytes = requests.get(query_image_uri).content
|
||||
query_image = Image.open(io.BytesIO(image_bytes))
|
||||
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
|
||||
assert actual.label == "dog"
|
||||
other = (
|
||||
table.search(query_image, vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
assert actual.label == other.label
|
||||
|
||||
arrow_table = table.search().select(["vector", "vec_from_bytes"]).to_arrow()
|
||||
assert np.allclose(
|
||||
arrow_table["vector"].combine_chunks().values.to_numpy(),
|
||||
arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(),
|
||||
)
|
||||
@@ -22,8 +22,9 @@ import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
|
||||
from lancedb.conftest import MockEmbeddingFunction
|
||||
from lancedb.conftest import MockTextEmbeddingFunction
|
||||
from lancedb.db import LanceDBConnection
|
||||
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.table import LanceTable
|
||||
|
||||
@@ -356,20 +357,23 @@ def test_create_with_embedding_function(db):
|
||||
text: str
|
||||
vector: Vector(10)
|
||||
|
||||
func = MockEmbeddingFunction(source_column="text", vector_column="vector")
|
||||
func = MockTextEmbeddingFunction()
|
||||
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
|
||||
df = pd.DataFrame({"text": texts, "vector": func(texts)})
|
||||
df = pd.DataFrame({"text": texts, "vector": func.compute_source_embeddings(texts)})
|
||||
|
||||
conf = EmbeddingFunctionConfig(
|
||||
source_column="text", vector_column="vector", function=func
|
||||
)
|
||||
table = LanceTable.create(
|
||||
db,
|
||||
"my_table",
|
||||
schema=MyTable,
|
||||
embedding_functions=[func],
|
||||
embedding_functions=[conf],
|
||||
)
|
||||
table.add(df)
|
||||
|
||||
query_str = "hi how are you?"
|
||||
query_vector = func(query_str)[0]
|
||||
query_vector = func.compute_query_embeddings(query_str)[0]
|
||||
expected = table.search(query_vector).limit(2).to_arrow()
|
||||
|
||||
actual = table.search(query_str).limit(2).to_arrow()
|
||||
@@ -377,17 +381,13 @@ def test_create_with_embedding_function(db):
|
||||
|
||||
|
||||
def test_add_with_embedding_function(db):
|
||||
class MyTable(LanceModel):
|
||||
text: str
|
||||
vector: Vector(10)
|
||||
emb = EmbeddingFunctionRegistry.get_instance().get("test")()
|
||||
|
||||
func = MockEmbeddingFunction(source_column="text", vector_column="vector")
|
||||
table = LanceTable.create(
|
||||
db,
|
||||
"my_table",
|
||||
schema=MyTable,
|
||||
embedding_functions=[func],
|
||||
)
|
||||
class MyTable(LanceModel):
|
||||
text: str = emb.SourceField()
|
||||
vector: Vector(emb.ndims) = emb.VectorField()
|
||||
|
||||
table = LanceTable.create(db, "my_table", schema=MyTable)
|
||||
|
||||
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
|
||||
df = pd.DataFrame({"text": texts})
|
||||
@@ -397,7 +397,7 @@ def test_add_with_embedding_function(db):
|
||||
table.add([{"text": t} for t in texts])
|
||||
|
||||
query_str = "hi how are you?"
|
||||
query_vector = func(query_str)[0]
|
||||
query_vector = emb.compute_query_embeddings(query_str)[0]
|
||||
expected = table.search(query_vector).limit(2).to_arrow()
|
||||
|
||||
actual = table.search(query_str).limit(2).to_arrow()
|
||||
|
||||
Reference in New Issue
Block a user