mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
update
This commit is contained in:
188
docs/src/eval/llama-finetuning-bench.py
Normal file
188
docs/src/eval/llama-finetuning-bench.py
Normal file
@@ -0,0 +1,188 @@
|
||||
import os
|
||||
from llama_index.core import SimpleDirectoryReader
|
||||
from llama_index.core.llama_dataset import LabelledRagDataset
|
||||
from llama_index.core.node_parser import SentenceSplitter
|
||||
from lancedb.embeddings.fine_tuner.dataset import QADataset, TextChunk
|
||||
from lancedb.embeddings.fine_tuner.llm import Openai
|
||||
from lancedb.embeddings import get_registry
|
||||
from llama_index.core import VectorStoreIndex
|
||||
from llama_index.vector_stores.lancedb import LanceDBVectorStore
|
||||
from llama_index.core import ServiceContext, VectorStoreIndex, StorageContext
|
||||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||||
from llama_index.core.llama_pack import download_llama_pack
|
||||
|
||||
import time
|
||||
import wandb
|
||||
|
||||
|
||||
|
||||
import pandas as pd
|
||||
|
||||
def get_paths_from_dataset(dataset: str, split=True):
|
||||
"""
|
||||
Returns paths of:
|
||||
- downloaded dataset, lance train dataset, lance test dataset, finetuned model
|
||||
"""
|
||||
if split:
|
||||
return f"./data/{dataset}", f"./data/{dataset}_lance_train", f"./data/{dataset}_lance_test", f"./data/tuned_{dataset}"
|
||||
return f"./data/{dataset}", f"./data/{dataset}_lance", f"./data/tuned_{dataset}"
|
||||
|
||||
def get_llama_dataset(dataset: str):
|
||||
"""
|
||||
returns:
|
||||
- nodes, documents, rag_dataset
|
||||
"""
|
||||
if not os.path.exists(f"./data/{dataset}"):
|
||||
os.system(f"llamaindex-cli download-llamadataset {dataset} --download-dir ./data/{dataset}")
|
||||
rag_dataset = LabelledRagDataset.from_json(f"./data/{dataset}/rag_dataset.json")
|
||||
docs = SimpleDirectoryReader(input_dir=f"./data/{dataset}/source_files").load_data()
|
||||
|
||||
parser = SentenceSplitter()
|
||||
nodes = parser.get_nodes_from_documents(docs)
|
||||
|
||||
return nodes, docs, rag_dataset
|
||||
|
||||
def lance_dataset_from_llama_nodes(nodes: list, name: str, split=True):
|
||||
llm = Openai()
|
||||
chunks = [TextChunk.from_llama_index_node(node) for node in nodes]
|
||||
# train test split 75-35
|
||||
if not split:
|
||||
if os.path.exists(f"./data/{name}_lance"):
|
||||
ds = QADataset.load(f"./data/{name}_lance")
|
||||
return ds
|
||||
ds = QADataset.from_llm(chunks, llm)
|
||||
ds.save(f"./data/{name}_lance")
|
||||
return ds
|
||||
|
||||
if os.path.exists(f"./data/{name}_lance_train") and os.path.exists(f"./data/{name}_lance_test"):
|
||||
train_ds = QADataset.load(f"./data/{name}_lance_train")
|
||||
test_ds = QADataset.load(f"./data/{name}_lance_test")
|
||||
return train_ds, test_ds
|
||||
# split chunks random
|
||||
train_size = int(len(chunks) * 0.65)
|
||||
train_chunks = chunks[:train_size]
|
||||
test_chunks = chunks[train_size:]
|
||||
train_ds = QADataset.from_llm(train_chunks, llm)
|
||||
test_ds = QADataset.from_llm(test_chunks, llm)
|
||||
train_ds.save(f"./data/{name}_lance_train")
|
||||
test_ds.save(f"./data/{name}_lance_test")
|
||||
return train_ds, test_ds
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def finetune(trainset: str, model: str, epochs: int, path: str, valset: str = None):
|
||||
print(f"Finetuning {model} for {epochs} epochs")
|
||||
print(f"trainset query instances: {len(trainset.queries)}")
|
||||
print(f"valset query instances: {len(valset.queries)}")
|
||||
|
||||
valset = valset if valset is not None else trainset
|
||||
model = get_registry().get("sentence-transformers").create(name=model)
|
||||
base_result = model.evaluate(valset, path=f"./data/eva/")
|
||||
base_hit_rate = pd.DataFrame(base_result)["is_hit"].mean()
|
||||
|
||||
model.finetune(trainset=trainset, valset=valset, path=path, epochs=epochs)
|
||||
tuned = get_registry().get("sentence-transformers").create(name=path)
|
||||
tuned_result = tuned.evaluate(valset, path=f"./data/eva/{str(time.time())}")
|
||||
tuned_hit_rate = pd.DataFrame(tuned_result)["is_hit"].mean()
|
||||
|
||||
return base_hit_rate, tuned_hit_rate
|
||||
|
||||
|
||||
def eval_rag(dataset: str, model: str):
|
||||
# Requires - pip install llama-index-vector-stores-lancedb
|
||||
# Requires - pip install llama-index-embeddings-huggingface
|
||||
nodes, docs, rag_dataset = get_llama_dataset(dataset)
|
||||
|
||||
embed_model = HuggingFaceEmbedding(model)
|
||||
vector_store = LanceDBVectorStore(uri="/tmp/lancedb")
|
||||
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
||||
service_context = ServiceContext.from_defaults(embed_model=embed_model)
|
||||
index = VectorStoreIndex(
|
||||
nodes,
|
||||
service_context=service_context,
|
||||
show_progress=True,
|
||||
storage_context=storage_context,
|
||||
)
|
||||
|
||||
# build basic RAG system
|
||||
index = VectorStoreIndex.from_documents(documents=docs)
|
||||
query_engine = index.as_query_engine()
|
||||
|
||||
# evaluate using the RagEvaluatorPack
|
||||
RagEvaluatorPack = download_llama_pack(
|
||||
"RagEvaluatorPack", "./rag_evaluator_pack"
|
||||
)
|
||||
rag_evaluator_pack = RagEvaluatorPack(
|
||||
rag_dataset=rag_dataset, query_engine=query_engine
|
||||
)
|
||||
|
||||
metrics = rag_evaluator_pack.run(
|
||||
batch_size=20, # batches the number of openai api calls to make
|
||||
sleep_time_in_seconds=1, # seconds to sleep before making an api call
|
||||
)
|
||||
|
||||
return metrics
|
||||
|
||||
def main(dataset, model, epochs, project: str = "lancedb_finetune"):
|
||||
nodes, _, _ = get_llama_dataset(dataset)
|
||||
trainset, valset = lance_dataset_from_llama_nodes(nodes, dataset)
|
||||
data_path, lance_train_path, lance_test_path, tuned_path = get_paths_from_dataset(dataset, split=True)
|
||||
|
||||
base_hit_rate, tuned_hit_rate = finetune(trainset, model, epochs, tuned_path, valset)
|
||||
""""
|
||||
wandb.init(project="lancedb_finetune", name=f"{dataset}_{model}_base")
|
||||
wandb.log({
|
||||
"hit_rate": base_hit_rate,
|
||||
})
|
||||
wandb.finish()
|
||||
|
||||
wandb.init(project="lancedb_finetune", name=f"{dataset}_{model}_{epochs}")
|
||||
wandb.log({
|
||||
"hit_rate": tuned_hit_rate,
|
||||
})
|
||||
wandb.finish()
|
||||
"""
|
||||
|
||||
# Base model model metrics
|
||||
metrics = eval_rag(dataset, model)
|
||||
|
||||
# Tuned model metrics
|
||||
metrics_tuned = eval_rag(dataset, tuned_path)
|
||||
|
||||
wandb.init(project="lancedb_rageval", name=f"{dataset}_{model}_base")
|
||||
import pdb; pdb.set_trace()
|
||||
wandb.log(
|
||||
metrics
|
||||
)
|
||||
wandb.finish()
|
||||
|
||||
wandb.init(project="lancedb_rageval", name=f"{dataset}_{model}_{epochs}")
|
||||
wandb.log(metrics_tuned)
|
||||
|
||||
|
||||
def banchmark_all():
|
||||
datasets = [#"Uber10KDataset2021", "MiniTruthfulQADataset", "MiniSquadV2Dataset", "MiniEsgBenchDataset", "MiniCovidQaDataset", "Llama2PaperDataset", "HistoryOfAlexnetDataset",
|
||||
"PatronusAIFinanceBenchDataset"]
|
||||
models = ["BAAI/bge-small-en-v1.5"]
|
||||
|
||||
for model in models:
|
||||
for dataset in datasets:
|
||||
main(dataset, model, 5)
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--dataset", type=str, default="BraintrustCodaHelpDeskDataset")
|
||||
parser.add_argument("--model", type=str, default="BAAI/bge-small-en-v1.5")
|
||||
parser.add_argument("--epochs", type=int, default=4)
|
||||
parser.add_argument("--project", type=str, default="lancedb_finetune")
|
||||
parser.add_argument("--benchmark-all", action="store_true")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.benchmark_all:
|
||||
banchmark_all()
|
||||
else:
|
||||
main(args.dataset, args.model, args.epochs, args.project)
|
||||
Reference in New Issue
Block a user