feat: add the optimize function to nodejs and async python (#1257)

The optimize function is pretty crucial for getting good performance
when building a large scale dataset but it was only exposed in rust
(many sync python users are probably doing this via to_lance today)

This PR adds the optimize function to nodejs and to python.

I left the function marked experimental because I think there will
likely be changes to optimization (e.g. if we add features like
"optimize on write"). I also only exposed the `cleanup_older_than`
configuration parameter since this one is very commonly used and the
rest have sensible defaults and we don't really know why we would
recommend different values for these defaults anyways.
This commit is contained in:
Weston Pace
2024-05-20 07:09:31 -07:00
committed by GitHub
parent 5349e8b1db
commit 4f512af024
9 changed files with 407 additions and 20 deletions

View File

@@ -86,3 +86,17 @@ class VectorQuery:
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def bypass_vector_index(self): ...
class CompactionStats:
fragments_removed: int
fragments_added: int
files_removed: int
files_added: int
class RemovalStats:
bytes_removed: int
old_versions_removed: int
class OptimizeStats:
compaction: CompactionStats
prune: RemovalStats

View File

@@ -58,7 +58,7 @@ if TYPE_CHECKING:
import PIL
from lance.dataset import CleanupStats, ReaderLike
from ._lancedb import Table as LanceDBTable
from ._lancedb import Table as LanceDBTable, OptimizeStats
from .db import LanceDBConnection
from .index import BTree, IndexConfig, IvfPq
@@ -2377,6 +2377,49 @@ class AsyncTable:
"""
await self._inner.restore()
async def optimize(
self, *, cleanup_older_than: Optional[timedelta] = None
) -> OptimizeStats:
"""
Optimize the on-disk data and indices for better performance.
Modeled after ``VACUUM`` in PostgreSQL.
Optimization covers three operations:
* Compaction: Merges small files into larger ones
* Prune: Removes old versions of the dataset
* Index: Optimizes the indices, adding new data to existing indices
Parameters
----------
cleanup_older_than: timedelta, optional default 7 days
All files belonging to versions older than this will be removed. Set
to 0 days to remove all versions except the latest. The latest version
is never removed.
Experimental API
----------------
The optimization process is undergoing active development and may change.
Our goal with these changes is to improve the performance of optimization and
reduce the complexity.
That being said, it is essential today to run optimize if you want the best
performance. It should be stable and safe to use in production, but it our
hope that the API may be simplified (or not even need to be called) in the
future.
The frequency an application shoudl call optimize is based on the frequency of
data modifications. If data is frequently added, deleted, or updated then
optimize should be run frequently. A good rule of thumb is to run optimize if
you have added or modified 100,000 or more records or run more than 20 data
modification operations.
"""
if cleanup_older_than is not None:
cleanup_older_than = round(cleanup_older_than.total_seconds() * 1000)
return await self._inner.optimize(cleanup_older_than)
async def list_indices(self) -> IndexConfig:
"""
List all indices that have been created with Self::create_index

View File

@@ -1025,3 +1025,29 @@ async def test_time_travel(db_async: AsyncConnection):
# Can't use restore if not checked out
with pytest.raises(ValueError, match="checkout before running restore"):
await table.restore()
@pytest.mark.asyncio
async def test_optimize(db_async: AsyncConnection):
table = await db_async.create_table(
"test",
data=[{"x": [1]}],
)
await table.add(
data=[
{"x": [2]},
],
)
stats = await table.optimize()
assert stats.compaction.files_removed == 2
assert stats.compaction.files_added == 1
assert stats.compaction.fragments_added == 1
assert stats.compaction.fragments_removed == 2
assert stats.prune.bytes_removed == 0
assert stats.prune.old_versions_removed == 0
stats = await table.optimize(cleanup_older_than=timedelta(seconds=0))
assert stats.prune.bytes_removed > 0
assert stats.prune.old_versions_removed == 3
assert await table.query().to_arrow() == pa.table({"x": [[1], [2]]})