diff --git a/docs/src/ann_indexes.md b/docs/src/ann_indexes.md
index c66c39b9..205bfa50 100644
--- a/docs/src/ann_indexes.md
+++ b/docs/src/ann_indexes.md
@@ -34,6 +34,7 @@ tbl.create_index(num_partitions=256, num_sub_vectors=96)
Since `create_index` has a training step, it can take a few minutes to finish for large tables. You can control the index
creation by providing the following parameters:
+- **metric** (default: "L2"): The distance metric to use. By default we use euclidean distance. We also support cosine distance.
- **num_partitions** (default: 256): The number of partitions of the index. The number of partitions should be configured so each partition has 3-5K vectors. For example, a table
with ~1M vectors should use 256 partitions. You can specify arbitrary number of partitions but powers of 2 is most conventional.
A higher number leads to faster queries, but it makes index generation slower.
@@ -56,6 +57,7 @@ There are a couple of parameters that can be used to fine-tune the search:
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
+
```python
tbl.search(np.random.random((768))) \
.limit(2) \
diff --git a/notebooks/youtube_transcript_search.ipynb b/notebooks/youtube_transcript_search.ipynb
index b3bfd83d..987373e8 100644
--- a/notebooks/youtube_transcript_search.ipynb
+++ b/notebooks/youtube_transcript_search.ipynb
@@ -1,7 +1,6 @@
{
"cells": [
{
- "attachments": {},
"cell_type": "markdown",
"id": "42bf01fb",
"metadata": {},
@@ -22,10 +21,10 @@
"output_type": "stream",
"text": [
"\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.0.1\u001b[0m\n",
+ "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\n",
- "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.0.1\u001b[0m\n",
+ "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
@@ -88,7 +87,6 @@
]
},
{
- "attachments": {},
"cell_type": "markdown",
"id": "5ac2b6a3",
"metadata": {},
@@ -231,7 +229,6 @@
]
},
{
- "attachments": {},
"cell_type": "markdown",
"id": "2106b5bb",
"metadata": {},
@@ -251,7 +248,7 @@
{
"data": {
"application/vnd.jupyter.widget-view+json": {
- "model_id": "39f3161f3ef54a129cd65fb296332b54",
+ "model_id": "c6f1c76d9567421d88911923388d2530",
"version_major": 2,
"version_minor": 0
},
@@ -574,7 +571,6 @@
]
},
{
- "attachments": {},
"cell_type": "markdown",
"id": "559a095b",
"metadata": {},
@@ -631,7 +627,7 @@
"