mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-14 07:42:58 +00:00
chore: switch over to requtes for remote client
This commit is contained in:
@@ -1,27 +0,0 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
from lancedb import LanceDBConnection
|
||||
|
||||
# TODO: setup integ test mark and script
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Need to set up a local server")
|
||||
def test_against_local_server():
|
||||
conn = LanceDBConnection("lancedb+http://localhost:10024")
|
||||
table = conn.open_table("sift1m_ivf1024_pq16")
|
||||
df = table.search(np.random.rand(128)).to_pandas()
|
||||
assert len(df) == 10
|
||||
@@ -1,95 +0,0 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import attrs
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
from aiohttp import web
|
||||
|
||||
from lancedb.remote.client import RestfulLanceDBClient, VectorQuery
|
||||
|
||||
|
||||
@attrs.define
|
||||
class MockLanceDBServer:
|
||||
runner: web.AppRunner = attrs.field(init=False)
|
||||
site: web.TCPSite = attrs.field(init=False)
|
||||
|
||||
async def query_handler(self, request: web.Request) -> web.Response:
|
||||
table_name = request.match_info["table_name"]
|
||||
assert table_name == "test_table"
|
||||
|
||||
await request.json()
|
||||
# TODO: do some matching
|
||||
|
||||
vecs = pd.Series([np.random.rand(128) for x in range(10)], name="vector")
|
||||
ids = pd.Series(range(10), name="id")
|
||||
df = pd.DataFrame([vecs, ids]).T
|
||||
|
||||
batch = pa.RecordBatch.from_pandas(
|
||||
df,
|
||||
schema=pa.schema(
|
||||
[
|
||||
pa.field("vector", pa.list_(pa.float32(), 128)),
|
||||
pa.field("id", pa.int64()),
|
||||
]
|
||||
),
|
||||
)
|
||||
|
||||
sink = pa.BufferOutputStream()
|
||||
with pa.ipc.new_file(sink, batch.schema) as writer:
|
||||
writer.write_batch(batch)
|
||||
|
||||
return web.Response(body=sink.getvalue().to_pybytes())
|
||||
|
||||
async def setup(self):
|
||||
app = web.Application()
|
||||
app.add_routes([web.post("/table/{table_name}", self.query_handler)])
|
||||
self.runner = web.AppRunner(app)
|
||||
await self.runner.setup()
|
||||
self.site = web.TCPSite(self.runner, "localhost", 8111)
|
||||
|
||||
async def start(self):
|
||||
await self.site.start()
|
||||
|
||||
async def stop(self):
|
||||
await self.runner.cleanup()
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="flaky somehow, fix later")
|
||||
@pytest.mark.asyncio
|
||||
async def test_e2e_with_mock_server():
|
||||
mock_server = MockLanceDBServer()
|
||||
await mock_server.setup()
|
||||
await mock_server.start()
|
||||
|
||||
try:
|
||||
client = RestfulLanceDBClient("lancedb+http://localhost:8111")
|
||||
df = (
|
||||
await client.query(
|
||||
"test_table",
|
||||
VectorQuery(
|
||||
vector=np.random.rand(128).tolist(),
|
||||
k=10,
|
||||
_metric="L2",
|
||||
columns=["id", "vector"],
|
||||
),
|
||||
)
|
||||
).to_pandas()
|
||||
|
||||
assert "vector" in df.columns
|
||||
assert "id" in df.columns
|
||||
finally:
|
||||
# make sure we don't leak resources
|
||||
await mock_server.stop()
|
||||
Reference in New Issue
Block a user