diff --git a/.github/workflows/docs_test.yml b/.github/workflows/docs_test.yml
index 6bfea4cf..cde9dc19 100644
--- a/.github/workflows/docs_test.yml
+++ b/.github/workflows/docs_test.yml
@@ -30,9 +30,13 @@ jobs:
uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
+ - name: Install protobuf
+ run: |
+ sudo apt update
+ sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
- sudo apt install -y protobuf-compiler libssl-dev
+ sudo apt install -y libssl-dev
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
@@ -72,9 +76,13 @@ jobs:
uses: actions/setup-node@v4
with:
node-version: 20
+ - name: Install protobuf
+ run: |
+ sudo apt update
+ sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
- sudo apt install -y protobuf-compiler libssl-dev
+ sudo apt install -y libssl-dev
rustup update && rustup default
- name: Rust cache
uses: swatinem/rust-cache@v2
diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml
index 5588c497..387db5c3 100644
--- a/docs/mkdocs.yml
+++ b/docs/mkdocs.yml
@@ -150,6 +150,7 @@ nav:
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
+ - Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
@@ -241,6 +242,7 @@ nav:
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
+ - Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
diff --git a/docs/src/examples/python_examples/rag.md b/docs/src/examples/python_examples/rag.md
index 48a6411f..3d9f89fa 100644
--- a/docs/src/examples/python_examples/rag.md
+++ b/docs/src/examples/python_examples/rag.md
@@ -2,11 +2,11 @@
**RAG: Revolutionize Information Retrieval with LanceDB ๐๐ง**
====================================================================
-Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, a solution for efficient vector-based information retrieval ๐.
+Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution for efficient vector-based information retrieval ๐.
**Experience the Future of Search ๐**
-RAG integrates large language models (LLMs) with scalable knowledge bases, enabling efficient information retrieval and answer generation ๐ค. By applying RAG to industry-specific use cases, developers can optimize query processing ๐, reduce response latency โฑ๏ธ, and improve resource utilization ๐ป. LanceDB provides a robust framework for integrating LLMs with external knowledge sources, facilitating accurate and informative responses ๐.
+๐ค RAG enables AI to **retrieve** relevant information from external sources and use it to **generate** more accurate and context-specific responses. ๐ป LanceDB provides a robust framework for integrating LLMs with external knowledge sources ๐.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
diff --git a/docs/src/examples/python_examples/recommendersystem.md b/docs/src/examples/python_examples/recommendersystem.md
new file mode 100644
index 00000000..ab7e4064
--- /dev/null
+++ b/docs/src/examples/python_examples/recommendersystem.md
@@ -0,0 +1,37 @@
+**Recommender Systems: Personalized Discovery๐ฟ๐บ**
+==============================================================
+Deliver personalized experiences with Recommender Systems. ๐
+
+**Technical Overview๐**
+
+๐๏ธ LanceDB's powerful vector database capabilities can efficiently store and query item embeddings. Recommender Systems can utilize it and provide personalized recommendations based on user preferences ๐ค and item features ๐ and therefore enhance the user experience.๐๏ธ
+
+| **Recommender System** | **Description** | **Links** |
+| ---------------------- | --------------- | --------- |
+| **Movie Recommender System๐ฌ** | ๐ค Use **collaborative filtering** to predict user preferences, assuming similar users will like similar movies, and leverage **Singular Value Decomposition** (SVD) from Numpy for precise matrix factorization and accurate recommendations๐ | [][movie_github]
[][movie_colab]
[][movie_python] |
+| **๐ฅ Movie Recommendation with Genres** | ๐ Creates movie embeddings using Doc2Vec, capturing genre and characteristic nuances, and leverages VectorDB for efficient storage and querying, enabling accurate genre classification and personalized movie recommendations through similarity searches๐ฅ | [][genre_github]
[][genre_colab]
[][genre_ghost] |
+| **๐๏ธ Product Recommender using Collaborative Filtering and LanceDB** | ๐ Using **Collaborative Filtering** and **LanceDB** to analyze your past purchases, recommends products based on user's past purchases. Demonstrated with the Instacart dataset in our example๐ | [][product_github]
[][product_colab]
[][product_python] |
+| **๐ Arxiv Search with OpenCLIP and LanceDB** | ๐ก Build a semantic search engine for Arxiv papers using LanceDB, and benchmarks its performance against traditional keyword-based search on Nomic's Atlas, to demonstrate the power of semantic search in finding relevant research papers๐ | [][arxiv_github]
[][arxiv_colab]
[][arxiv_python] |
+| **Food Recommendation System๐ด** | ๐ Build a food recommendation system with LanceDB, featuring vector-based recommendations, full-text search, hybrid search, and reranking model integration for personalized and accurate food suggestions๐ | [][food_github]
[][food_colab] |
+
+[movie_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender
+[movie_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb
+[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
+
+
+[genre_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres
+[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
+[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
+
+[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
+[product_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.ipynb
+[product_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.py
+
+
+[arxiv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender
+[arxiv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.ipynb
+[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
+
+
+[food_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation
+[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation/main.ipynb
diff --git a/docs/src/examples/python_examples/vector_search.md b/docs/src/examples/python_examples/vector_search.md
index d0713ef2..7182eb09 100644
--- a/docs/src/examples/python_examples/vector_search.md
+++ b/docs/src/examples/python_examples/vector_search.md
@@ -1,7 +1,7 @@
**Vector Search: Unlock Efficient Document Retrieval ๐๐**
====================================================================
-Unlock the power of vector search with LanceDB, a cutting-edge solution for efficient vector-based document retrieval ๐.
+Vector search with LanceDB, is a solution for efficient and accurate similarity searches in large datasets ๐.
**Vector Search Capabilities in LanceDB๐**