mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-07 04:12:59 +00:00
docs: minor updates for js migration guides (#1451)
Co-authored-by: Will Jones <willjones127@gmail.com>
This commit is contained in:
29
docs/src/js/namespaces/embedding/README.md
Normal file
29
docs/src/js/namespaces/embedding/README.md
Normal file
@@ -0,0 +1,29 @@
|
||||
[**@lancedb/lancedb**](../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../globals.md) / embedding
|
||||
|
||||
# embedding
|
||||
|
||||
## Index
|
||||
|
||||
### Classes
|
||||
|
||||
- [EmbeddingFunction](classes/EmbeddingFunction.md)
|
||||
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
|
||||
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
||||
|
||||
### Interfaces
|
||||
|
||||
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
|
||||
|
||||
### Type Aliases
|
||||
|
||||
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
|
||||
|
||||
### Functions
|
||||
|
||||
- [LanceSchema](functions/LanceSchema.md)
|
||||
- [getRegistry](functions/getRegistry.md)
|
||||
- [register](functions/register.md)
|
||||
162
docs/src/js/namespaces/embedding/classes/EmbeddingFunction.md
Normal file
162
docs/src/js/namespaces/embedding/classes/EmbeddingFunction.md
Normal file
@@ -0,0 +1,162 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunction
|
||||
|
||||
# Class: `abstract` EmbeddingFunction<T, M>
|
||||
|
||||
An embedding function that automatically creates vector representation for a given column.
|
||||
|
||||
## Extended by
|
||||
|
||||
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||
|
||||
## Type Parameters
|
||||
|
||||
• **T** = `any`
|
||||
|
||||
• **M** *extends* `FunctionOptions` = `FunctionOptions`
|
||||
|
||||
## Constructors
|
||||
|
||||
### new EmbeddingFunction()
|
||||
|
||||
> **new EmbeddingFunction**<`T`, `M`>(): [`EmbeddingFunction`](EmbeddingFunction.md)<`T`, `M`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md)<`T`, `M`>
|
||||
|
||||
## Methods
|
||||
|
||||
### computeQueryEmbeddings()
|
||||
|
||||
> **computeQueryEmbeddings**(`data`): `Promise`<`number`[] \| `Float32Array` \| `Float64Array`>
|
||||
|
||||
Compute the embeddings for a single query
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `T`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[] \| `Float32Array` \| `Float64Array`>
|
||||
|
||||
***
|
||||
|
||||
### computeSourceEmbeddings()
|
||||
|
||||
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`<`number`[][] \| `Float32Array`[] \| `Float64Array`[]>
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `T`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[][] \| `Float32Array`[] \| `Float64Array`[]>
|
||||
|
||||
***
|
||||
|
||||
### embeddingDataType()
|
||||
|
||||
> `abstract` **embeddingDataType**(): `Float`<`Floats`>
|
||||
|
||||
The datatype of the embeddings
|
||||
|
||||
#### Returns
|
||||
|
||||
`Float`<`Floats`>
|
||||
|
||||
***
|
||||
|
||||
### ndims()
|
||||
|
||||
> **ndims**(): `undefined` \| `number`
|
||||
|
||||
The number of dimensions of the embeddings
|
||||
|
||||
#### Returns
|
||||
|
||||
`undefined` \| `number`
|
||||
|
||||
***
|
||||
|
||||
### sourceField()
|
||||
|
||||
> **sourceField**(`optionsOrDatatype`): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
|
||||
sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **optionsOrDatatype**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
|
||||
The options for the field or the datatype
|
||||
|
||||
#### Returns
|
||||
|
||||
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
|
||||
#### See
|
||||
|
||||
lancedb.LanceSchema
|
||||
|
||||
***
|
||||
|
||||
### toJSON()
|
||||
|
||||
> `abstract` **toJSON**(): `Partial`<`M`>
|
||||
|
||||
Convert the embedding function to a JSON object
|
||||
It is used to serialize the embedding function to the schema
|
||||
It's important that any object returned by this method contains all the necessary
|
||||
information to recreate the embedding function
|
||||
|
||||
It should return the same object that was passed to the constructor
|
||||
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
|
||||
|
||||
#### Returns
|
||||
|
||||
`Partial`<`M`>
|
||||
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
constructor(options: {model: string, timeout: number}) {
|
||||
super();
|
||||
this.model = options.model;
|
||||
this.timeout = options.timeout;
|
||||
}
|
||||
toJSON() {
|
||||
return {
|
||||
model: this.model,
|
||||
timeout: this.timeout,
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### vectorField()
|
||||
|
||||
> **vectorField**(`optionsOrDatatype`?): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
|
||||
vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **optionsOrDatatype?**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
|
||||
#### See
|
||||
|
||||
lancedb.LanceSchema
|
||||
@@ -0,0 +1,124 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionRegistry
|
||||
|
||||
# Class: EmbeddingFunctionRegistry
|
||||
|
||||
This is a singleton class used to register embedding functions
|
||||
and fetch them by name. It also handles serializing and deserializing.
|
||||
You can implement your own embedding function by subclassing EmbeddingFunction
|
||||
or TextEmbeddingFunction and registering it with the registry
|
||||
|
||||
## Constructors
|
||||
|
||||
### new EmbeddingFunctionRegistry()
|
||||
|
||||
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
[`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
|
||||
## Methods
|
||||
|
||||
### functionToMetadata()
|
||||
|
||||
> **functionToMetadata**(`conf`): `Record`<`string`, `any`>
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
`Record`<`string`, `any`>
|
||||
|
||||
***
|
||||
|
||||
### get()
|
||||
|
||||
> **get**<`T`, `Name`>(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`<[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)> : `undefined` \| `EmbeddingFunctionCreate`<`T`>
|
||||
|
||||
Fetch an embedding function by name
|
||||
|
||||
#### Type Parameters
|
||||
|
||||
• **T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)<`unknown`, `FunctionOptions`>
|
||||
|
||||
• **Name** *extends* `string` = `""`
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
|
||||
|
||||
The name of the function
|
||||
|
||||
#### Returns
|
||||
|
||||
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`<[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)> : `undefined` \| `EmbeddingFunctionCreate`<`T`>
|
||||
|
||||
***
|
||||
|
||||
### getTableMetadata()
|
||||
|
||||
> **getTableMetadata**(`functions`): `Map`<`string`, `string`>
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
|
||||
|
||||
#### Returns
|
||||
|
||||
`Map`<`string`, `string`>
|
||||
|
||||
***
|
||||
|
||||
### register()
|
||||
|
||||
> **register**<`T`>(`this`, `alias`?): (`ctor`) => `any`
|
||||
|
||||
Register an embedding function
|
||||
|
||||
#### Type Parameters
|
||||
|
||||
• **T** *extends* `EmbeddingFunctionConstructor`<[`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>> = `EmbeddingFunctionConstructor`<[`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
|
||||
• **alias?**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Function`
|
||||
|
||||
##### Parameters
|
||||
|
||||
• **ctor**: `T`
|
||||
|
||||
##### Returns
|
||||
|
||||
`any`
|
||||
|
||||
#### Throws
|
||||
|
||||
Error if the function is already registered
|
||||
|
||||
***
|
||||
|
||||
### reset()
|
||||
|
||||
> **reset**(`this`): `void`
|
||||
|
||||
reset the registry to the initial state
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||
|
||||
#### Returns
|
||||
|
||||
`void`
|
||||
@@ -0,0 +1,196 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
|
||||
|
||||
# Class: OpenAIEmbeddingFunction
|
||||
|
||||
An embedding function that automatically creates vector representation for a given column.
|
||||
|
||||
## Extends
|
||||
|
||||
- [`EmbeddingFunction`](EmbeddingFunction.md)<`string`, `Partial`<[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)>>
|
||||
|
||||
## Constructors
|
||||
|
||||
### new OpenAIEmbeddingFunction()
|
||||
|
||||
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **options**: `Partial`<[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)> = `...`
|
||||
|
||||
#### Returns
|
||||
|
||||
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||
|
||||
#### Overrides
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
|
||||
|
||||
## Methods
|
||||
|
||||
### computeQueryEmbeddings()
|
||||
|
||||
> **computeQueryEmbeddings**(`data`): `Promise`<`number`[]>
|
||||
|
||||
Compute the embeddings for a single query
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `string`
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[]>
|
||||
|
||||
#### Overrides
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeQueryEmbeddings`](EmbeddingFunction.md#computequeryembeddings)
|
||||
|
||||
***
|
||||
|
||||
### computeSourceEmbeddings()
|
||||
|
||||
> **computeSourceEmbeddings**(`data`): `Promise`<`number`[][]>
|
||||
|
||||
Creates a vector representation for the given values.
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **data**: `string`[]
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`number`[][]>
|
||||
|
||||
#### Overrides
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeSourceEmbeddings`](EmbeddingFunction.md#computesourceembeddings)
|
||||
|
||||
***
|
||||
|
||||
### embeddingDataType()
|
||||
|
||||
> **embeddingDataType**(): `Float`<`Floats`>
|
||||
|
||||
The datatype of the embeddings
|
||||
|
||||
#### Returns
|
||||
|
||||
`Float`<`Floats`>
|
||||
|
||||
#### Overrides
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`embeddingDataType`](EmbeddingFunction.md#embeddingdatatype)
|
||||
|
||||
***
|
||||
|
||||
### ndims()
|
||||
|
||||
> **ndims**(): `number`
|
||||
|
||||
The number of dimensions of the embeddings
|
||||
|
||||
#### Returns
|
||||
|
||||
`number`
|
||||
|
||||
#### Overrides
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
|
||||
|
||||
***
|
||||
|
||||
### sourceField()
|
||||
|
||||
> **sourceField**(`optionsOrDatatype`): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
|
||||
sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **optionsOrDatatype**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
|
||||
The options for the field or the datatype
|
||||
|
||||
#### Returns
|
||||
|
||||
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
|
||||
#### See
|
||||
|
||||
lancedb.LanceSchema
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
|
||||
|
||||
***
|
||||
|
||||
### toJSON()
|
||||
|
||||
> **toJSON**(): `object`
|
||||
|
||||
Convert the embedding function to a JSON object
|
||||
It is used to serialize the embedding function to the schema
|
||||
It's important that any object returned by this method contains all the necessary
|
||||
information to recreate the embedding function
|
||||
|
||||
It should return the same object that was passed to the constructor
|
||||
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
|
||||
|
||||
#### Returns
|
||||
|
||||
`object`
|
||||
|
||||
##### model
|
||||
|
||||
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
|
||||
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
constructor(options: {model: string, timeout: number}) {
|
||||
super();
|
||||
this.model = options.model;
|
||||
this.timeout = options.timeout;
|
||||
}
|
||||
toJSON() {
|
||||
return {
|
||||
model: this.model,
|
||||
timeout: this.timeout,
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
#### Overrides
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
|
||||
|
||||
***
|
||||
|
||||
### vectorField()
|
||||
|
||||
> **vectorField**(`optionsOrDatatype`?): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
|
||||
vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
|
||||
#### Parameters
|
||||
|
||||
• **optionsOrDatatype?**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||
|
||||
#### See
|
||||
|
||||
lancedb.LanceSchema
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`EmbeddingFunction`](EmbeddingFunction.md).[`vectorField`](EmbeddingFunction.md#vectorfield)
|
||||
39
docs/src/js/namespaces/embedding/functions/LanceSchema.md
Normal file
39
docs/src/js/namespaces/embedding/functions/LanceSchema.md
Normal file
@@ -0,0 +1,39 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / LanceSchema
|
||||
|
||||
# Function: LanceSchema()
|
||||
|
||||
> **LanceSchema**(`fields`): `Schema`
|
||||
|
||||
Create a schema with embedding functions.
|
||||
|
||||
## Parameters
|
||||
|
||||
• **fields**: `Record`<`string`, `object` \| [`object`, `Map`<`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>>]>
|
||||
|
||||
## Returns
|
||||
|
||||
`Schema`
|
||||
|
||||
Schema
|
||||
|
||||
## Example
|
||||
|
||||
```ts
|
||||
class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
// ...
|
||||
}
|
||||
const func = new MyEmbeddingFunction();
|
||||
const schema = LanceSchema({
|
||||
id: new Int32(),
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
// optional: specify the datatype and/or dimensions
|
||||
vector2: func.vectorField({ datatype: new Float32(), dims: 3}),
|
||||
});
|
||||
|
||||
const table = await db.createTable("my_table", data, { schema });
|
||||
```
|
||||
23
docs/src/js/namespaces/embedding/functions/getRegistry.md
Normal file
23
docs/src/js/namespaces/embedding/functions/getRegistry.md
Normal file
@@ -0,0 +1,23 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / getRegistry
|
||||
|
||||
# Function: getRegistry()
|
||||
|
||||
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
|
||||
|
||||
Utility function to get the global instance of the registry
|
||||
|
||||
## Returns
|
||||
|
||||
[`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
|
||||
|
||||
`EmbeddingFunctionRegistry` The global instance of the registry
|
||||
|
||||
## Example
|
||||
|
||||
```ts
|
||||
const registry = getRegistry();
|
||||
const openai = registry.get("openai").create();
|
||||
25
docs/src/js/namespaces/embedding/functions/register.md
Normal file
25
docs/src/js/namespaces/embedding/functions/register.md
Normal file
@@ -0,0 +1,25 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / register
|
||||
|
||||
# Function: register()
|
||||
|
||||
> **register**(`name`?): (`ctor`) => `any`
|
||||
|
||||
## Parameters
|
||||
|
||||
• **name?**: `string`
|
||||
|
||||
## Returns
|
||||
|
||||
`Function`
|
||||
|
||||
### Parameters
|
||||
|
||||
• **ctor**: `EmbeddingFunctionConstructor`<[`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>>
|
||||
|
||||
### Returns
|
||||
|
||||
`any`
|
||||
@@ -0,0 +1,25 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionConfig
|
||||
|
||||
# Interface: EmbeddingFunctionConfig
|
||||
|
||||
## Properties
|
||||
|
||||
### function
|
||||
|
||||
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>
|
||||
|
||||
***
|
||||
|
||||
### sourceColumn
|
||||
|
||||
> **sourceColumn**: `string`
|
||||
|
||||
***
|
||||
|
||||
### vectorColumn?
|
||||
|
||||
> `optional` **vectorColumn**: `string`
|
||||
@@ -0,0 +1,19 @@
|
||||
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
|
||||
|
||||
# Type Alias: OpenAIOptions
|
||||
|
||||
> **OpenAIOptions**: `object`
|
||||
|
||||
## Type declaration
|
||||
|
||||
### apiKey
|
||||
|
||||
> **apiKey**: `string`
|
||||
|
||||
### model
|
||||
|
||||
> **model**: `EmbeddingCreateParams`\[`"model"`\]
|
||||
Reference in New Issue
Block a user