mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-06 03:42:57 +00:00
Qian/query option doc (#615)
- API documentation improvement for queries (table.search) - a small bug fix for the remote API on create_table  
This commit is contained in:
@@ -149,13 +149,13 @@ class Table(ABC):
|
||||
@property
|
||||
@abstractmethod
|
||||
def schema(self) -> pa.Schema:
|
||||
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
|
||||
this Table
|
||||
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
|
||||
of this Table
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def to_pandas(self):
|
||||
def to_pandas(self) -> "pd.DataFrame":
|
||||
"""Return the table as a pandas DataFrame.
|
||||
|
||||
Returns
|
||||
@@ -191,17 +191,18 @@ class Table(ABC):
|
||||
The distance metric to use when creating the index.
|
||||
Valid values are "L2", "cosine", or "dot".
|
||||
L2 is euclidean distance.
|
||||
num_partitions: int
|
||||
num_partitions: int, default 256
|
||||
The number of IVF partitions to use when creating the index.
|
||||
Default is 256.
|
||||
num_sub_vectors: int
|
||||
num_sub_vectors: int, default 96
|
||||
The number of PQ sub-vectors to use when creating the index.
|
||||
Default is 96.
|
||||
vector_column_name: str, default "vector"
|
||||
The vector column name to create the index.
|
||||
replace: bool, default True
|
||||
If True, replace the existing index if it exists.
|
||||
If False, raise an error if duplicate index exists.
|
||||
- If True, replace the existing index if it exists.
|
||||
|
||||
- If False, raise an error if duplicate index exists.
|
||||
accelerator: str, default None
|
||||
If set, use the given accelerator to create the index.
|
||||
Only support "cuda" for now.
|
||||
@@ -220,8 +221,14 @@ class Table(ABC):
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data: list-of-dict, dict, pd.DataFrame
|
||||
The data to insert into the table.
|
||||
data: DATA
|
||||
The data to insert into the table. Acceptable types are:
|
||||
|
||||
- dict or list-of-dict
|
||||
|
||||
- pandas.DataFrame
|
||||
|
||||
- pyarrow.Table or pyarrow.RecordBatch
|
||||
mode: str
|
||||
The mode to use when writing the data. Valid values are
|
||||
"append" and "overwrite".
|
||||
@@ -242,31 +249,70 @@ class Table(ABC):
|
||||
query_type: str = "auto",
|
||||
) -> LanceQueryBuilder:
|
||||
"""Create a search query to find the nearest neighbors
|
||||
of the given query vector.
|
||||
of the given query vector. We currently support [vector search][search]
|
||||
and [full-text search][experimental-full-text-search].
|
||||
|
||||
All query options are defined in [Query][lancedb.query.Query].
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> data = [
|
||||
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
|
||||
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
|
||||
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
|
||||
... ]
|
||||
>>> table = db.create_table("my_table", data)
|
||||
>>> query = [0.4, 1.4, 2.4]
|
||||
>>> (table.search(query, vector_column_name="vector")
|
||||
... .where("original_width > 1000", prefilter=True)
|
||||
... .select(["caption", "original_width"])
|
||||
... .limit(2)
|
||||
... .to_pandas())
|
||||
caption original_width vector _distance
|
||||
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
|
||||
1 test 3000 [0.3, 6.2, 2.6] 23.089996
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query: str, list, np.ndarray, PIL.Image.Image, default None
|
||||
The query to search for. If None then
|
||||
the select/where/limit clauses are applied to filter
|
||||
query: list/np.ndarray/str/PIL.Image.Image, default None
|
||||
The targetted vector to search for.
|
||||
|
||||
- *default None*.
|
||||
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
||||
|
||||
- If None then the select/where/limit clauses are applied to filter
|
||||
the table
|
||||
vector_column_name: str, default "vector"
|
||||
vector_column_name: str
|
||||
The name of the vector column to search.
|
||||
query_type: str, default "auto"
|
||||
"vector", "fts", or "auto"
|
||||
If "auto" then the query type is inferred from the query;
|
||||
If `query` is a list/np.ndarray then the query type is "vector";
|
||||
If `query` is a PIL.Image.Image then either do vector search
|
||||
or raise an error if no corresponding embedding function is found.
|
||||
If `query` is a string, then the query type is "vector" if the
|
||||
*default "vector"*
|
||||
query_type: str
|
||||
*default "auto"*.
|
||||
Acceptable types are: "vector", "fts", or "auto"
|
||||
|
||||
- If "auto" then the query type is inferred from the query;
|
||||
|
||||
- If `query` is a list/np.ndarray then the query type is
|
||||
"vector";
|
||||
|
||||
- If `query` is a PIL.Image.Image then either do vector search,
|
||||
or raise an error if no corresponding embedding function is found.
|
||||
|
||||
- If `query` is a string, then the query type is "vector" if the
|
||||
table has embedding functions else the query type is "fts"
|
||||
|
||||
Returns
|
||||
-------
|
||||
LanceQueryBuilder
|
||||
A query builder object representing the query.
|
||||
Once executed, the query returns selected columns, the vector,
|
||||
and also the "_distance" column which is the distance between the query
|
||||
Once executed, the query returns
|
||||
|
||||
- selected columns
|
||||
|
||||
- the vector
|
||||
|
||||
- and also the "_distance" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
@@ -285,14 +331,19 @@ class Table(ABC):
|
||||
Parameters
|
||||
----------
|
||||
where: str
|
||||
The SQL where clause to use when deleting rows. For example, 'x = 2'
|
||||
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
||||
The SQL where clause to use when deleting rows.
|
||||
|
||||
- For example, 'x = 2' or 'x IN (1, 2, 3)'.
|
||||
|
||||
The filter must not be empty, or it will error.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> data = [
|
||||
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
|
||||
... {"x": 1, "vector": [1, 2]},
|
||||
... {"x": 2, "vector": [3, 4]},
|
||||
... {"x": 3, "vector": [5, 6]}
|
||||
... ]
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> table = db.create_table("my_table", data)
|
||||
@@ -377,7 +428,8 @@ class LanceTable(Table):
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
|
||||
>>> table = db.create_table("my_table",
|
||||
... [{"vector": [1.1, 0.9], "type": "vector"}])
|
||||
>>> table.version
|
||||
2
|
||||
>>> table.to_pandas()
|
||||
@@ -424,7 +476,8 @@ class LanceTable(Table):
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> table = db.create_table("my_table", [{"vector": [1.1, 0.9], "type": "vector"}])
|
||||
>>> table = db.create_table("my_table", [
|
||||
... {"vector": [1.1, 0.9], "type": "vector"}])
|
||||
>>> table.version
|
||||
2
|
||||
>>> table.to_pandas()
|
||||
@@ -669,14 +722,39 @@ class LanceTable(Table):
|
||||
query_type: str = "auto",
|
||||
) -> LanceQueryBuilder:
|
||||
"""Create a search query to find the nearest neighbors
|
||||
of the given query vector.
|
||||
of the given query vector. We currently support [vector search][search]
|
||||
and [full-text search][search].
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> data = [
|
||||
... {"original_width": 100, "caption": "bar", "vector": [0.1, 2.3, 4.5]},
|
||||
... {"original_width": 2000, "caption": "foo", "vector": [0.5, 3.4, 1.3]},
|
||||
... {"original_width": 3000, "caption": "test", "vector": [0.3, 6.2, 2.6]}
|
||||
... ]
|
||||
>>> table = db.create_table("my_table", data)
|
||||
>>> query = [0.4, 1.4, 2.4]
|
||||
>>> (table.search(query, vector_column_name="vector")
|
||||
... .where("original_width > 1000", prefilter=True)
|
||||
... .select(["caption", "original_width"])
|
||||
... .limit(2)
|
||||
... .to_pandas())
|
||||
caption original_width vector _distance
|
||||
0 foo 2000 [0.5, 3.4, 1.3] 5.220000
|
||||
1 test 3000 [0.3, 6.2, 2.6] 23.089996
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query: str, list, np.ndarray, a PIL Image or None
|
||||
The query to search for. If None then
|
||||
the select/where/limit clauses are applied to filter
|
||||
the table
|
||||
query: list/np.ndarray/str/PIL.Image.Image, default None
|
||||
The targetted vector to search for.
|
||||
|
||||
- *default None*.
|
||||
Acceptable types are: list, np.ndarray, PIL.Image.Image
|
||||
|
||||
- If None then the select/[where][sql]/limit clauses are applied
|
||||
to filter the table
|
||||
vector_column_name: str, default "vector"
|
||||
The name of the vector column to search.
|
||||
query_type: str, default "auto"
|
||||
@@ -685,7 +763,7 @@ class LanceTable(Table):
|
||||
If `query` is a list/np.ndarray then the query type is "vector";
|
||||
If `query` is a PIL.Image.Image then either do vector search
|
||||
or raise an error if no corresponding embedding function is found.
|
||||
If the query is a string, then the query type is "vector" if the
|
||||
If the `query` is a string, then the query type is "vector" if the
|
||||
table has embedding functions, else the query type is "fts"
|
||||
|
||||
Returns
|
||||
@@ -720,7 +798,9 @@ class LanceTable(Table):
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> data = [
|
||||
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
|
||||
... {"x": 1, "vector": [1, 2]},
|
||||
... {"x": 2, "vector": [3, 4]},
|
||||
... {"x": 3, "vector": [5, 6]}
|
||||
... ]
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> table = db.create_table("my_table", data)
|
||||
@@ -740,7 +820,8 @@ class LanceTable(Table):
|
||||
The data to insert into the table.
|
||||
At least one of `data` or `schema` must be provided.
|
||||
schema: pa.Schema or LanceModel, optional
|
||||
The schema of the table. If not provided, the schema is inferred from the data.
|
||||
The schema of the table. If not provided,
|
||||
the schema is inferred from the data.
|
||||
At least one of `data` or `schema` must be provided.
|
||||
mode: str, default "create"
|
||||
The mode to use when writing the data. Valid values are
|
||||
@@ -811,7 +892,8 @@ class LanceTable(Table):
|
||||
file_info = fs.get_file_info(path)
|
||||
if file_info.type != pa.fs.FileType.Directory:
|
||||
raise FileNotFoundError(
|
||||
f"Table {name} does not exist. Please first call db.create_table({name}, data)"
|
||||
f"Table {name} does not exist."
|
||||
f"Please first call db.create_table({name}, data)"
|
||||
)
|
||||
return tbl
|
||||
|
||||
@@ -838,7 +920,9 @@ class LanceTable(Table):
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> data = [
|
||||
... {"x": 1, "vector": [1, 2]}, {"x": 2, "vector": [3, 4]}, {"x": 3, "vector": [5, 6]}
|
||||
... {"x": 1, "vector": [1, 2]},
|
||||
... {"x": 2, "vector": [3, 4]},
|
||||
... {"x": 3, "vector": [5, 6]}
|
||||
... ]
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> table = db.create_table("my_table", data)
|
||||
@@ -1013,7 +1097,8 @@ def _sanitize_vector_column(
|
||||
# ChunkedArray is annoying to work with, so we combine chunks here
|
||||
vec_arr = data[vector_column_name].combine_chunks()
|
||||
if pa.types.is_list(data[vector_column_name].type):
|
||||
# if it's a variable size list array we make sure the dimensions are all the same
|
||||
# if it's a variable size list array,
|
||||
# we make sure the dimensions are all the same
|
||||
has_jagged_ndims = len(vec_arr.values) % len(data) != 0
|
||||
if has_jagged_ndims:
|
||||
data = _sanitize_jagged(
|
||||
|
||||
Reference in New Issue
Block a user