feat: add to_list and to_pandas api's (#556)

Add `to_list` to return query results as list of python dict (so we're
not too pandas-centric). Closes #555

Add `to_pandas` API and add deprecation warning on `to_df`. Closes #545

Co-authored-by: Chang She <chang@lancedb.com>
This commit is contained in:
Chang She
2023-10-11 12:18:55 -07:00
committed by Weston Pace
parent a737bbff19
commit 8469d010f8
26 changed files with 125 additions and 71 deletions

View File

@@ -97,7 +97,7 @@ There are a couple of parameters that can be used to fine-tune the search:
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_df()
.to_pandas()
```
```
vector item _distance
@@ -124,7 +124,7 @@ You can further filter the elements returned by a search using a where clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df()
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
=== "Javascript"
@@ -141,7 +141,7 @@ You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
```
vector _distance

View File

@@ -146,7 +146,7 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_df()
tbl.search([100, 100]).limit(2).to_pandas()
```
This returns a pandas DataFrame with the results.

View File

@@ -118,7 +118,7 @@ belong in the same latent space and your results will be nonsensical.
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df()
tbl.search(query_vector).limit(10).to_pandas()
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -80,14 +80,14 @@ def handler(event, context):
# Shape of SIFT is (128,1M), d=float32
query_vector = np.array(event['query_vector'], dtype=np.float32)
rs = table.search(query_vector).limit(2).to_df()
rs = table.search(query_vector).limit(2).to_list()
return {
"statusCode": status_code,
"headers": {
"Content-Type": "application/json"
},
"body": rs.to_json()
"body": json.dumps(rs)
}
```

View File

@@ -43,7 +43,13 @@ table.create_fts_index("text")
To search:
```python
df = table.search("puppy").limit(10).select(["text"]).to_df()
table.search("puppy").limit(10).select(["text"]).to_list()
```
Which returns a list of dictionaries:
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
```
LanceDB automatically looks for an FTS index if the input is str.

View File

@@ -36,7 +36,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df()
result = table.search([100, 100]).limit(2).to_list()
```
=== "Javascript"

View File

@@ -19,11 +19,11 @@
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
]
}
],
@@ -39,6 +39,7 @@
"outputs": [],
"source": [
"import io\n",
"\n",
"import PIL\n",
"import duckdb\n",
"import lancedb"
@@ -158,18 +159,18 @@
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n",
" \"tbl.search(embedding).limit(9).to_pandas()\"\n",
" )\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n",
" return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n",
"\n",
"def find_image_keywords(query):\n",
" code = (\n",
" \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n",
" f\"tbl.search('{query}').limit(9).to_pandas()\"\n",
" )\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n",
" return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n",
"\n",
"def find_image_sql(query):\n",
" code = (\n",

View File

@@ -27,11 +27,11 @@
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
]
}
],
@@ -184,7 +184,7 @@
"df = (contextualize(data.to_pandas())\n",
" .groupby(\"title\").text_col(\"text\")\n",
" .window(20).stride(4)\n",
" .to_df())\n",
" .to_pandas())\n",
"df.head(1)"
]
},
@@ -603,7 +603,7 @@
"outputs": [],
"source": [
"# Use LanceDB to get top 3 most relevant context\n",
"context = tbl.search(emb).limit(3).to_df()"
"context = tbl.search(emb).limit(3).to_pandas()"
]
},
{

View File

@@ -74,7 +74,7 @@ table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
df = table.search(query_vector).limit(1).to_pandas()
print(df)
```
@@ -89,12 +89,12 @@ If you have more complex criteria, you can always apply the filter to the result
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
results = table.search([100, 100]).where("price < 15").to_pandas()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
df = results = table.search([100, 100]).to_pandas()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"

View File

@@ -67,7 +67,7 @@ await db_setup.createTable('my_vectors', data)
df = tbl.search(np.random.random((1536))) \
.limit(10) \
.to_df()
.to_list()
```
=== "JavaScript"
@@ -92,7 +92,7 @@ as well.
df = tbl.search(np.random.random((1536))) \
.metric("cosine") \
.limit(10) \
.to_df()
.to_list()
```