js docs, modal example, doc notebook integration, update doc styles (#131)

This commit is contained in:
Jai
2023-06-02 15:24:16 -07:00
committed by GitHub
parent fbd0bc7740
commit 8af5f19cc1
29 changed files with 1780 additions and 143 deletions

View File

@@ -1,74 +1,142 @@
# Basic LanceDB Functionality
We'll cover the basics of using LanceDB on your local machine in this section.
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Javascript"
```shell
npm install vectordb
```
## How to connect to a database
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code:
```python
import lancedb
uri = "~/.lancedb"
db = lancedb.connect(uri)
```
=== "Python"
```python
import lancedb
uri = "~/.lancedb"
db = lancedb.connect(uri)
```
LanceDB will create the directory if it doesn't exist (including parent directories).
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, use the `db.uri` property.
If you need a reminder of the uri, use the `db.uri` property.
=== "Javascript"
```javascript
const lancedb = require("vectordb");
const uri = "~./lancedb";
const db = await lancedb.connect(uri);
```
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table
To create a table, you can use the following code:
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
Under the hood, LanceDB is converting the input data into an Apache Arrow table
and persisting it to disk in [Lance format](github.com/eto-ai/lance).
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
```
=== "Javascript"
```javascript
const tb = await db.createTable("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
```
!!! warning
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function.
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
## How to open an existing table
Once created, you can open a table using the following code:
```python
tbl = db.open_table("my_table")
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
```python
tbl = db.open_table("my_table")
```
```python
db.table_names()
```
If you forget the name of your table, you can always get a listing of all table names:
```python
print(db.table_names())
```
=== "Javascript"
```javascript
const tbl = await db.openTable("my_table");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript
console.log(db.tableNames());
```
## How to add data to a table
After a table has been created, you can always add more data to it using
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Python"
```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
tbl.add(df)
```
=== "Javascript"
```javascript
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0},
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
```
## How to search for (approximate) nearest neighbors
Once you've embedded the query, you can find its nearest neighbors using the following code:
```python
tbl.search([100, 100]).limit(2).to_df()
```
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_df()
```
This returns a pandas DataFrame with the results.
This returns a pandas DataFrame with the results.
=== "Javascript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute();
```
## What's next