mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-04 10:52:56 +00:00
js docs, modal example, doc notebook integration, update doc styles (#131)
This commit is contained in:
@@ -1,74 +1,142 @@
|
||||
# Basic LanceDB Functionality
|
||||
|
||||
We'll cover the basics of using LanceDB on your local machine in this section.
|
||||
|
||||
??? info "LanceDB runs embedded on your backend application, so there is no need to run a separate server."
|
||||
|
||||
<img src="../assets/lancedb_embedded_explanation.png" width="650px" />
|
||||
|
||||
## Installation
|
||||
|
||||
=== "Python"
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```shell
|
||||
npm install vectordb
|
||||
```
|
||||
|
||||
## How to connect to a database
|
||||
|
||||
In local mode, LanceDB stores data in a directory on your local machine. To connect to a local database, you can use the following code:
|
||||
```python
|
||||
import lancedb
|
||||
uri = "~/.lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
import lancedb
|
||||
uri = "~/.lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, use the `db.uri` property.
|
||||
If you need a reminder of the uri, use the `db.uri` property.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const lancedb = require("vectordb");
|
||||
|
||||
const uri = "~./lancedb";
|
||||
const db = await lancedb.connect(uri);
|
||||
```
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, you can call `db.uri()`.
|
||||
|
||||
## How to create a table
|
||||
|
||||
To create a table, you can use the following code:
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
Under the hood, LanceDB is converting the input data into an Apache Arrow table
|
||||
and persisting it to disk in [Lance format](github.com/eto-ai/lance).
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `create_table` method.
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `create_table` method.
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
```
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tb = await db.createTable("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
```
|
||||
|
||||
!!! warning
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
If you want to overwrite the table, you can pass in `mode="overwrite"`
|
||||
to the `createTable` function.
|
||||
|
||||
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||
|
||||
## How to open an existing table
|
||||
|
||||
Once created, you can open a table using the following code:
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
=== "Python"
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
```
|
||||
|
||||
```python
|
||||
db.table_names()
|
||||
```
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const tbl = await db.openTable("my_table");
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
|
||||
```javascript
|
||||
console.log(db.tableNames());
|
||||
```
|
||||
|
||||
## How to add data to a table
|
||||
|
||||
After a table has been created, you can always add more data to it using
|
||||
|
||||
```python
|
||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||
tbl.add(df)
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||
tbl.add(df)
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
await tbl.add([vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||
```
|
||||
|
||||
## How to search for (approximate) nearest neighbors
|
||||
|
||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
||||
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
=== "Python"
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
This returns a pandas DataFrame with the results.
|
||||
|
||||
=== "Javascript"
|
||||
```javascript
|
||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||
```
|
||||
|
||||
## What's next
|
||||
|
||||
|
||||
Reference in New Issue
Block a user