feat(voyageai): update voyage integration (#2713)

Adding multimodal usage guide
VoyageAI integration changes:
 - Adding voyage-3.5 and voyage-3.5-lite models
 - Adding voyage-context-3 model
 - Adding rerank-2.5 and rerank-2.5-lite models
This commit is contained in:
fzowl
2025-10-29 12:19:07 +01:00
committed by GitHub
parent 9d29c83f81
commit 93c2cf2f59
5 changed files with 310 additions and 9 deletions

View File

@@ -0,0 +1,97 @@
# VoyageAI Embeddings : Multimodal
VoyageAI embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://docs.voyageai.com/docs/multimodal-embeddings](https://docs.voyageai.com/docs/multimodal-embeddings)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|-------------------------|-------------------------------------------|
| `name` | `str` | `"voyage-multimodal-3"` | The model ID of the VoyageAI model to use |
Usage Example:
```python
import base64
import os
from io import BytesIO
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['VOYAGE_API_KEY'] = 'YOUR_VOYAGE_API_KEY'
db = lancedb.connect(".lancedb")
func = get_registry().get("voyageai").create(name="voyage-multimodal-3")
def image_to_base64(image_bytes: bytes):
buffered = BytesIO(image_bytes)
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode("utf-8")
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: str = func.SourceField() # image bytes base64 encoded as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
if "images" in db.table_names():
db.drop_table("images")
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
images_bytes = [image_to_base64(requests.get(uri).content) for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": images_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend", "vec_from_bytes").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(BytesIO(image_bytes))
actual = table.search(query_image, "vec_from_bytes").limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```