diff --git a/docs/src/embedding.md b/docs/src/embedding.md index 61118404..0657f9bd 100644 --- a/docs/src/embedding.md +++ b/docs/src/embedding.md @@ -46,7 +46,7 @@ You can also use an external API like OpenAI to generate embeddings def embed_func(c): rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002") - return [record["embedding"] for record in rs["data"]] + return [record["embedding"] for record in rs["data"]] ``` === "Javascript" @@ -126,7 +126,7 @@ belong in the same latent space and your results will be nonsensical. === "Javascript" ```javascript const results = await table - .search('What's the best pizza topping?') + .search("What's the best pizza topping?") .limit(10) .execute() ``` diff --git a/docs/src/examples/transformerjs_embedding_search_nodejs.md b/docs/src/examples/transformerjs_embedding_search_nodejs.md index 77413bb5..38875d52 100644 --- a/docs/src/examples/transformerjs_embedding_search_nodejs.md +++ b/docs/src/examples/transformerjs_embedding_search_nodejs.md @@ -1,4 +1,8 @@ -# Vector embedding search using TransformersJS and NodeJS +# Vector embedding search using TransformersJS + +## Embed and query data from LacneDB using TransformersJS + +transformersjs This example shows how to use the [transformers.js](https://github.com/xenova/transformers.js) library to perform vector embedding search using LanceDB's Javascript API.