mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-27 23:12:58 +00:00
feat: search multiple query vectors as one query (#1811)
Allows users to pass multiple query vector as part of a single query plan. This just runs the queries in parallel without any further optimization. It's mostly a convenience. Previously, I think this was only handled by the sync Python remote API. This makes it common across all SDKs. Closes https://github.com/lancedb/lancedb/issues/1803 ```python >>> import lancedb >>> import asyncio >>> >>> async def main(): ... db = await lancedb.connect_async("./demo") ... table = await db.create_table("demo", [{"id": 1, "vector": [1, 2, 3]}, {"id": 2, "vector": [4, 5, 6]}], mode="overwrite") ... return await table.query().nearest_to([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [4.0, 5.0, 6.0]]).limit(1).to_pandas() ... >>> asyncio.run(main()) query_index id vector _distance 0 2 2 [4.0, 5.0, 6.0] 0.0 1 1 2 [4.0, 5.0, 6.0] 0.0 2 0 1 [1.0, 2.0, 3.0] 0.0 ```
This commit is contained in:
@@ -142,6 +142,13 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().only_if(predicate);
|
||||
}
|
||||
|
||||
pub fn add_query_vector(&mut self, vector: Bound<'_, PyAny>) -> PyResult<()> {
|
||||
let data: ArrayData = ArrayData::from_pyarrow_bound(&vector)?;
|
||||
let array = make_array(data);
|
||||
self.inner = self.inner.clone().add_query_vector(array).infer_error()?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn select(&mut self, columns: Vec<(String, String)>) {
|
||||
self.inner = self.inner.clone().select(Select::dynamic(&columns));
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user