initial commit

This commit is contained in:
Rok Mihevc
2023-10-25 04:36:57 +02:00
committed by Chang She
parent 4dc7497547
commit ac955a5a7e
3 changed files with 169 additions and 3 deletions

View File

@@ -186,6 +186,129 @@ def _py_type_to_arrow_type(py_type: Type[Any], field: FieldInfo) -> pa.DataType:
)
class ImageMixin(ABC):
@staticmethod
@abstractmethod
def value_arrow_type() -> pa.DataType:
raise NotImplementedError
def EncodedImage() -> Type[ImageMixin]:
"""Pydantic EncodedImage Type.
!!! warning
Experimental feature.
Examples
--------
>>> import pydantic
>>> from lancedb.pydantic import EncodedImage
...
>>> class MyModel(pydantic.BaseModel):
... image: EncodedImage()
>>> schema = pydantic_to_schema(MyModel)
>>> assert schema == pa.schema([
... pa.field("image", pa.binary(), False)
... ])
"""
class EncodedImage(bytes, ImageMixin):
def __repr__(self):
return "EncodedImage()"
@staticmethod
def value_arrow_type() -> pa.DataType:
return pa.binary()
@classmethod
def __get_pydantic_core_schema__(
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
cls,
core_schema.binary_schema(),
)
@classmethod
def __get_validators__(cls) -> Generator[Callable, None, None]:
yield cls.validate
# For pydantic v1
@classmethod
def validate(cls, v):
if not isinstance(v, bytes):
raise TypeError("A bytes is needed")
return cls(v)
if PYDANTIC_VERSION < (2, 0):
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]):
field_schema["type"] = "string"
field_schema["format"] = "binary"
return EncodedImage
def ImageURI() -> Type[ImageMixin]:
"""Pydantic ImageUri Type.
!!! warning
Experimental feature.
Examples
--------
>>> import pydantic
>>> from lancedb.pydantic import ImageURI
...
>>> class MyModel(pydantic.BaseModel):
... url: ImageURI()
>>> schema = pydantic_to_schema(MyModel)
>>> assert schema == pa.schema([
... pa.field("url", pa.utf8(), False),
... ])
"""
class ImageURI(str, ImageMixin):
def __repr__(self):
return "ImageURI()"
@staticmethod
def value_arrow_type() -> pa.DataType:
return pa.string()
@classmethod
def __get_pydantic_core_schema__(
cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler
) -> CoreSchema:
return core_schema.no_info_after_validator_function(
cls,
core_schema.string_schema(),
)
@classmethod
def __get_validators__(cls) -> Generator[Callable, None, None]:
yield cls.validate
# For pydantic v1
@classmethod
def validate(cls, v):
if not isinstance(v, str):
raise TypeError("A str is needed")
return cls(v)
if PYDANTIC_VERSION < (2, 0):
@classmethod
def __modify_schema__(cls, field_schema: Dict[str, Any]):
field_schema["type"] = "string"
field_schema["format"] = "string"
return ImageURI
if PYDANTIC_VERSION.major < 2:
def _pydantic_model_to_fields(model: pydantic.BaseModel) -> List[pa.Field]:

View File

@@ -20,7 +20,14 @@ from typing import List, Optional, Tuple
import pyarrow as pa
import pydantic
import pytest
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, Vector, pydantic_to_schema
from lancedb.pydantic import (
PYDANTIC_VERSION,
LanceModel,
Vector,
pydantic_to_schema,
EncodedImage,
ImageURI,
)
from pydantic import Field
@@ -243,3 +250,18 @@ def test_lance_model():
t = TestModel()
assert t == TestModel(vec=[0.0] * 16, li=[1, 2, 3])
def test_lance_model_with_lance_types():
class TestModel(LanceModel):
image: EncodedImage() = Field()
uri: ImageURI() = Field()
# TODO: tensor type?
# TODO
# schema = pydantic_to_schema(TestModel)
# assert schema == TestModel.to_arrow_schema()
# assert TestModel.field_names() == ["image", "uri"]
#
# t = TestModel()
# assert t == TestModel(vec=[0.0] * 16, li=[1, 2, 3], image=EncodedImageArray(), uri="https://lancedb.dev")

View File

@@ -33,6 +33,7 @@ from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistr
from lancedb.pydantic import LanceModel, Vector
from lancedb.table import LanceTable
from pydantic import BaseModel
from lance.arrow import EncodedImageArray, EncodedImageType, ImageURIType
class MockDB:
@@ -108,6 +109,8 @@ def test_create_table(db):
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("item", pa.string()),
pa.field("price", pa.float32()),
pa.field("encoded_image", EncodedImageType()),
pa.field("image_uris", ImageURIType()),
]
)
expected = pa.Table.from_arrays(
@@ -115,13 +118,31 @@ def test_create_table(db):
pa.FixedSizeListArray.from_arrays(pa.array([3.1, 4.1, 5.9, 26.5]), 2),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
pa.ExtensionArray.from_storage(
EncodedImageType(), pa.array([b"foo", b"bar"], pa.binary())
),
pa.ExtensionArray.from_storage(
ImageURIType(), pa.array(["/tmp/foo", "/tmp/bar"], pa.string())
),
],
schema=schema,
)
data = [
[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0,
"encoded_image": b"foo",
"image_uris": "/tmp/foo",
},
{
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0,
"encoded_image": b"bar",
"image_uris": "/tmp/bar",
},
]
]
df = pd.DataFrame(data[0])