feat(index): add IVF_RQ index type (#2687)

this expose IVF_RQ (RabitQ quantization) index type to lancedb

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
This commit is contained in:
BubbleCal
2025-10-09 15:46:18 +08:00
committed by GitHub
parent 56a16b1728
commit b59d1007d3
14 changed files with 361 additions and 13 deletions

View File

@@ -861,6 +861,15 @@ describe("When creating an index", () => {
});
});
it("should be able to create IVF_RQ", async () => {
await tbl.createIndex("vec", {
config: Index.ivfRq({
numPartitions: 10,
numBits: 1,
}),
});
});
it("should allow me to replace (or not) an existing index", async () => {
await tbl.createIndex("id");
// Default is replace=true

View File

@@ -85,6 +85,7 @@ export {
Index,
IndexOptions,
IvfPqOptions,
IvfRqOptions,
IvfFlatOptions,
HnswPqOptions,
HnswSqOptions,

View File

@@ -112,6 +112,77 @@ export interface IvfPqOptions {
sampleRate?: number;
}
export interface IvfRqOptions {
/**
* The number of IVF partitions to create.
*
* This value should generally scale with the number of rows in the dataset.
* By default the number of partitions is the square root of the number of
* rows.
*
* If this value is too large then the first part of the search (picking the
* right partition) will be slow. If this value is too small then the second
* part of the search (searching within a partition) will be slow.
*/
numPartitions?: number;
/**
* Number of bits per dimension for residual quantization.
*
* This value controls how much each residual component is compressed. The more
* bits, the more accurate the index will be but the slower search. Typical values
* are small integers; the default is 1 bit per dimension.
*/
numBits?: number;
/**
* Distance type to use to build the index.
*
* Default value is "l2".
*
* This is used when training the index to calculate the IVF partitions
* (vectors are grouped in partitions with similar vectors according to this
* distance type) and during quantization.
*
* The distance type used to train an index MUST match the distance type used
* to search the index. Failure to do so will yield inaccurate results.
*
* The following distance types are available:
*
* "l2" - Euclidean distance.
* "cosine" - Cosine distance.
* "dot" - Dot product.
*/
distanceType?: "l2" | "cosine" | "dot";
/**
* Max iterations to train IVF kmeans.
*
* When training an IVF index we use kmeans to calculate the partitions. This parameter
* controls how many iterations of kmeans to run.
*
* The default value is 50.
*/
maxIterations?: number;
/**
* The number of vectors, per partition, to sample when training IVF kmeans.
*
* When an IVF index is trained, we need to calculate partitions. These are groups
* of vectors that are similar to each other. To do this we use an algorithm called kmeans.
*
* Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
* random sample of the data. This parameter controls the size of the sample. The total
* number of vectors used to train the index is `sample_rate * num_partitions`.
*
* Increasing this value might improve the quality of the index but in most cases the
* default should be sufficient.
*
* The default value is 256.
*/
sampleRate?: number;
}
/**
* Options to create an `HNSW_PQ` index
*/
@@ -523,6 +594,35 @@ export class Index {
options?.distanceType,
options?.numPartitions,
options?.numSubVectors,
options?.numBits,
options?.maxIterations,
options?.sampleRate,
),
);
}
/**
* Create an IvfRq index
*
* IVF-RQ (RabitQ Quantization) compresses vectors using RabitQ quantization
* and organizes them into IVF partitions.
*
* The compression scheme is called RabitQ quantization. Each dimension is quantized into a small number of bits.
* The parameters `num_bits` and `num_partitions` control this process, providing a tradeoff
* between index size (and thus search speed) and index accuracy.
*
* The partitioning process is called IVF and the `num_partitions` parameter controls how
* many groups to create.
*
* Note that training an IVF RQ index on a large dataset is a slow operation and
* currently is also a memory intensive operation.
*/
static ivfRq(options?: Partial<IvfRqOptions>) {
return new Index(
LanceDbIndex.ivfRq(
options?.distanceType,
options?.numPartitions,
options?.numBits,
options?.maxIterations,
options?.sampleRate,
),

View File

@@ -6,6 +6,7 @@ use std::sync::Mutex;
use lancedb::index::scalar::{BTreeIndexBuilder, FtsIndexBuilder};
use lancedb::index::vector::{
IvfFlatIndexBuilder, IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder,
IvfRqIndexBuilder,
};
use lancedb::index::Index as LanceDbIndex;
use napi_derive::napi;
@@ -65,6 +66,36 @@ impl Index {
})
}
#[napi(factory)]
pub fn ivf_rq(
distance_type: Option<String>,
num_partitions: Option<u32>,
num_bits: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
) -> napi::Result<Self> {
let mut ivf_rq_builder = IvfRqIndexBuilder::default();
if let Some(distance_type) = distance_type {
let distance_type = parse_distance_type(distance_type)?;
ivf_rq_builder = ivf_rq_builder.distance_type(distance_type);
}
if let Some(num_partitions) = num_partitions {
ivf_rq_builder = ivf_rq_builder.num_partitions(num_partitions);
}
if let Some(num_bits) = num_bits {
ivf_rq_builder = ivf_rq_builder.num_bits(num_bits);
}
if let Some(max_iterations) = max_iterations {
ivf_rq_builder = ivf_rq_builder.max_iterations(max_iterations);
}
if let Some(sample_rate) = sample_rate {
ivf_rq_builder = ivf_rq_builder.sample_rate(sample_rate);
}
Ok(Self {
inner: Mutex::new(Some(LanceDbIndex::IvfRq(ivf_rq_builder))),
})
}
#[napi(factory)]
pub fn ivf_flat(
distance_type: Option<String>,