mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-07 12:22:59 +00:00
Add tutorial notebook
Convert contextualization and embeddings functionality. And use it with converted notebook for video search
This commit is contained in:
@@ -7,6 +7,7 @@ theme:
|
||||
plugins:
|
||||
- search
|
||||
- mkdocstrings
|
||||
- mkdocs-jupyter
|
||||
|
||||
nav:
|
||||
- Home: index.md
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
mkdocs==1.4.2
|
||||
mkdocs-jupyter==0.24.1
|
||||
mkdocs-material==9.1.3
|
||||
mkdocstrings[python]==0.20.0
|
||||
|
||||
@@ -14,7 +14,26 @@ The key features of LanceDB include:
|
||||
|
||||
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
```shell
|
||||
pip install lancedb
|
||||
```
|
||||
|
||||
## Quickstart
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect(".")
|
||||
table = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
result = table.search([100, 100]).limit(2).to_df()
|
||||
```
|
||||
|
||||
|
||||
## Documentation Quick Links
|
||||
|
||||
* `Quick start` - search and filter a hello world vector dataset with LanceDB using the Python SDK.
|
||||
* [`API Reference`](python.md) - detailed documentation for the LanceDB Python SDK.
|
||||
|
||||
Reference in New Issue
Block a user