docs: add the async python API to the docs (#1156)

This commit is contained in:
Weston Pace
2024-03-26 07:54:16 -05:00
committed by GitHub
parent 98c1e635b3
commit c37a28abbd
13 changed files with 624 additions and 400 deletions

View File

@@ -48,11 +48,20 @@
=== "Python"
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
!!! note "Asynchronous Python API"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
=== "Typescript"
@@ -82,15 +91,14 @@ If you need a reminder of the uri, you can call `db.uri()`.
### Create a table from initial data
If you have data to insert into the table at creation time, you can simultaneously create a
table and insert the data into it. The schema of the data will be used as the schema of the
table and insert the data into it. The schema of the data will be used as the schema of the
table.
=== "Python"
```python
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
--8<-- "python/python/tests/docs/test_basic.py:create_table"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
If the table already exists, LanceDB will raise an error by default.
@@ -100,10 +108,8 @@ table.
You can also pass in a pandas DataFrame directly:
```python
import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
tbl = db.create_table("table_from_df", data=df)
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript"
@@ -138,15 +144,14 @@ table.
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema, so that you can add
data to the table at a later time (as long as it conforms to the schema). This is
data to the table at a later time (as long as it conforms to the schema). This is
similar to a `CREATE TABLE` statement in SQL.
=== "Python"
```python
import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema)
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
=== "Typescript"
@@ -168,7 +173,8 @@ Once created, you can open a table as follows:
=== "Python"
```python
tbl = db.open_table("my_table")
--8<-- "python/python/tests/docs/test_basic.py:open_table"
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript"
@@ -188,7 +194,8 @@ If you forget the name of your table, you can always get a listing of all table
=== "Python"
```python
print(db.table_names())
--8<-- "python/python/tests/docs/test_basic.py:table_names"
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Javascript"
@@ -210,15 +217,8 @@ After a table has been created, you can always add more data to it as follows:
=== "Python"
```python
# Option 1: Add a list of dicts to a table
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
--8<-- "python/python/tests/docs/test_basic.py:add_data"
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript"
@@ -240,7 +240,8 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "Python"
```python
tbl.search([100, 100]).limit(2).to_pandas()
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
This returns a pandas DataFrame with the results.
@@ -274,7 +275,8 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Python"
```py
tbl.create_index()
--8<-- "python/python/tests/docs/test_basic.py:create_index"
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript"
@@ -286,15 +288,15 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:create_index"
--8<-- "rust/lancedb/examples/simple.rs:create_index"
```
!!! note "Why do I need to create an index manually?"
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
## Delete rows from a table
@@ -305,7 +307,8 @@ This can delete any number of rows that match the filter.
=== "Python"
```python
tbl.delete('item = "fizz"')
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript"
@@ -322,7 +325,7 @@ This can delete any number of rows that match the filter.
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause (`only_if()` in Rust) on a search. They can be as
simple or complex as needed. To see what expressions are supported, see the
simple or complex as needed. To see what expressions are supported, see the
[SQL filters](sql.md) section.
=== "Python"
@@ -344,7 +347,8 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
db.drop_table("my_table")
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.