mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-17 01:02:59 +00:00
docs: add the async python API to the docs (#1156)
This commit is contained in:
@@ -48,11 +48,20 @@
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
uri = "data/sample-lancedb"
|
||||
db = lancedb.connect(uri)
|
||||
```
|
||||
```python
|
||||
--8<-- "python/python/tests/docs/test_basic.py:imports"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:connect"
|
||||
|
||||
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
|
||||
```
|
||||
|
||||
!!! note "Asynchronous Python API"
|
||||
|
||||
The asynchronous Python API is new and has some slight differences compared
|
||||
to the synchronous API. Feel free to start using the asynchronous version.
|
||||
Once all features have migrated we will start to move the synchronous API to
|
||||
use the same syntax as the asynchronous API. To help with this migration we
|
||||
have created a [migration guide](migration.md) detailing the differences.
|
||||
|
||||
=== "Typescript"
|
||||
|
||||
@@ -82,15 +91,14 @@ If you need a reminder of the uri, you can call `db.uri()`.
|
||||
### Create a table from initial data
|
||||
|
||||
If you have data to insert into the table at creation time, you can simultaneously create a
|
||||
table and insert the data into it. The schema of the data will be used as the schema of the
|
||||
table and insert the data into it. The schema of the data will be used as the schema of the
|
||||
table.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl = db.create_table("my_table",
|
||||
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_table"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
|
||||
```
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
@@ -100,10 +108,8 @@ table.
|
||||
You can also pass in a pandas DataFrame directly:
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||
tbl = db.create_table("table_from_df", data=df)
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
@@ -138,15 +144,14 @@ table.
|
||||
|
||||
Sometimes you may not have the data to insert into the table at creation time.
|
||||
In this case, you can create an empty table and specify the schema, so that you can add
|
||||
data to the table at a later time (as long as it conforms to the schema). This is
|
||||
data to the table at a later time (as long as it conforms to the schema). This is
|
||||
similar to a `CREATE TABLE` statement in SQL.
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
import pyarrow as pa
|
||||
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
|
||||
tbl = db.create_table("empty_table", schema=schema)
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
@@ -168,7 +173,8 @@ Once created, you can open a table as follows:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl = db.open_table("my_table")
|
||||
--8<-- "python/python/tests/docs/test_basic.py:open_table"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
@@ -188,7 +194,8 @@ If you forget the name of your table, you can always get a listing of all table
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
print(db.table_names())
|
||||
--8<-- "python/python/tests/docs/test_basic.py:table_names"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
|
||||
```
|
||||
|
||||
=== "Javascript"
|
||||
@@ -210,15 +217,8 @@ After a table has been created, you can always add more data to it as follows:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
|
||||
# Option 1: Add a list of dicts to a table
|
||||
data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
|
||||
tbl.add(data)
|
||||
|
||||
# Option 2: Add a pandas DataFrame to a table
|
||||
df = pd.DataFrame(data)
|
||||
tbl.add(data)
|
||||
--8<-- "python/python/tests/docs/test_basic.py:add_data"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
@@ -240,7 +240,8 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.search([100, 100]).limit(2).to_pandas()
|
||||
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
|
||||
```
|
||||
|
||||
This returns a pandas DataFrame with the results.
|
||||
@@ -274,7 +275,8 @@ LanceDB allows you to create an ANN index on a table as follows:
|
||||
=== "Python"
|
||||
|
||||
```py
|
||||
tbl.create_index()
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_index"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
@@ -286,15 +288,15 @@ LanceDB allows you to create an ANN index on a table as follows:
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/lancedb/examples/simple.rs:create_index"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:create_index"
|
||||
```
|
||||
|
||||
!!! note "Why do I need to create an index manually?"
|
||||
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
|
||||
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
|
||||
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
|
||||
to fine-tune index size, query latency and accuracy. See the section on
|
||||
[ANN indexes](ann_indexes.md) for more details.
|
||||
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
|
||||
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
|
||||
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
|
||||
to fine-tune index size, query latency and accuracy. See the section on
|
||||
[ANN indexes](ann_indexes.md) for more details.
|
||||
|
||||
## Delete rows from a table
|
||||
|
||||
@@ -305,7 +307,8 @@ This can delete any number of rows that match the filter.
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
tbl.delete('item = "fizz"')
|
||||
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
|
||||
```
|
||||
|
||||
=== "Typescript"
|
||||
@@ -322,7 +325,7 @@ This can delete any number of rows that match the filter.
|
||||
|
||||
The deletion predicate is a SQL expression that supports the same expressions
|
||||
as the `where()` clause (`only_if()` in Rust) on a search. They can be as
|
||||
simple or complex as needed. To see what expressions are supported, see the
|
||||
simple or complex as needed. To see what expressions are supported, see the
|
||||
[SQL filters](sql.md) section.
|
||||
|
||||
=== "Python"
|
||||
@@ -344,7 +347,8 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
db.drop_table("my_table")
|
||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
|
||||
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
|
||||
```
|
||||
|
||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||
|
||||
Reference in New Issue
Block a user