feat: voyageai support (#1799)

Adding VoyageAI embedding and rerank support
This commit is contained in:
fzowl
2024-11-08 20:21:20 +01:00
committed by GitHub
parent 21021f94ca
commit cbbc07d0f5
9 changed files with 423 additions and 0 deletions

View File

@@ -27,3 +27,4 @@ from .imagebind import ImageBindEmbeddings
from .utils import with_embeddings
from .jinaai import JinaEmbeddings
from .watsonx import WatsonxEmbeddings
from .voyageai import VoyageAIEmbeddingFunction

View File

@@ -0,0 +1,127 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import ClassVar, List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import api_key_not_found_help, TEXT
@register("voyageai")
class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
"""
An embedding function that uses the VoyageAI API
https://docs.voyageai.com/docs/embeddings
Parameters
----------
name: str
The name of the model to use. List of acceptable models:
* voyage-3
* voyage-3-lite
* voyage-finance-2
* voyage-multilingual-2
* voyage-law-2
* voyage-code-2
Examples
--------
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
voyageai = EmbeddingFunctionRegistry
.get_instance()
.get("voyageai")
.create(name="voyage-3")
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
"""
name: str
client: ClassVar = None
def ndims(self):
if self.name == "voyage-3-lite":
return 512
elif self.name == "voyage-code-2":
return 1536
elif self.name in [
"voyage-3",
"voyage-finance-2",
"voyage-multilingual-2",
"voyage-law-2",
]:
return 1024
else:
raise ValueError(f"Model {self.name} not supported")
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, input_type="query")
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
input_type = (
kwargs.get("input_type") or "document"
) # assume source input type if not passed by `compute_query_embeddings`
return self.generate_embeddings(texts, input_type=input_type)
def generate_embeddings(
self, texts: Union[List[str], np.ndarray], *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
input_type: Optional[str]
truncation: Optional[bool]
"""
VoyageAIEmbeddingFunction._init_client()
rs = VoyageAIEmbeddingFunction.client.embed(
texts=texts, model=self.name, **kwargs
)
return [emb for emb in rs.embeddings]
@staticmethod
def _init_client():
if VoyageAIEmbeddingFunction.client is None:
voyageai = attempt_import_or_raise("voyageai")
if os.environ.get("VOYAGE_API_KEY") is None:
api_key_not_found_help("voyageai")
VoyageAIEmbeddingFunction.client = voyageai.Client(
os.environ["VOYAGE_API_KEY"]
)

View File

@@ -7,6 +7,7 @@ from .openai import OpenaiReranker
from .jinaai import JinaReranker
from .rrf import RRFReranker
from .answerdotai import AnswerdotaiRerankers
from .voyageai import VoyageAIReranker
__all__ = [
"Reranker",
@@ -18,4 +19,5 @@ __all__ = [
"JinaReranker",
"RRFReranker",
"AnswerdotaiRerankers",
"VoyageAIReranker",
]

View File

@@ -0,0 +1,133 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import cached_property
from typing import Union, Optional
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import Reranker
class VoyageAIReranker(Reranker):
"""
Reranks the results using the VoyageAI Rerank API.
https://docs.voyageai.com/docs/reranker
Parameters
----------
model_name : str, default "rerank-english-v2.0"
The name of the cross encoder model to use. Available voyageai models are:
- rerank-2
- rerank-2-lite
column : str, default "text"
The name of the column to use as input to the cross encoder model.
top_n : int, default None
The number of results to return. If None, will return all results.
return_score : str, default "relevance"
options are "relevance" or "all". Only "relevance" is supported for now.
api_key : str, default None
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
truncation : Optional[bool], default None
"""
def __init__(
self,
model_name: str,
column: str = "text",
top_n: Optional[int] = None,
return_score="relevance",
api_key: Optional[str] = None,
truncation: Optional[bool] = True,
):
super().__init__(return_score)
self.model_name = model_name
self.column = column
self.top_n = top_n
self.api_key = api_key
self.truncation = truncation
@cached_property
def _client(self):
voyageai = attempt_import_or_raise("voyageai")
if os.environ.get("VOYAGE_API_KEY") is None and self.api_key is None:
raise ValueError(
"VOYAGE_API_KEY not set. Either set it in your environment or \
pass it as `api_key` argument to the VoyageAIReranker."
)
return voyageai.Client(
api_key=os.environ.get("VOYAGE_API_KEY") or self.api_key,
)
def _rerank(self, result_set: pa.Table, query: str):
docs = result_set[self.column].to_pylist()
response = self._client.rerank(
query=query,
documents=docs,
top_k=self.top_n,
model=self.model_name,
truncation=self.truncation,
)
results = (
response.results
) # returns list (text, idx, relevance) attributes sorted descending by score
indices, scores = list(
zip(*[(result.index, result.relevance_score) for result in results])
) # tuples
result_set = result_set.take(list(indices))
# add the scores
result_set = result_set.append_column(
"_relevance_score", pa.array(scores, type=pa.float32())
)
return result_set
def rerank_hybrid(
self,
query: str,
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for voyageai reranker"
)
return combined_results
def rerank_vector(
self,
query: str,
vector_results: pa.Table,
):
result_set = self._rerank(vector_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["_distance"])
return result_set
def rerank_fts(
self,
query: str,
fts_results: pa.Table,
):
result_set = self._rerank(fts_results, query)
if self.score == "relevance":
result_set = result_set.drop_columns(["_score"])
return result_set

View File

@@ -196,6 +196,7 @@ def test_add_optional_vector(tmp_path):
"ollama",
"cohere",
"instructor",
"voyageai",
],
)
def test_embedding_function_safe_model_dump(embedding_type):

View File

@@ -481,3 +481,22 @@ def test_ollama_embedding(tmp_path):
json.dumps(dumped_model)
except TypeError:
pytest.fail("Failed to JSON serialize the dumped model")
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
)
def test_voyageai_embedding_function():
voyageai = get_registry().get("voyageai").create(name="voyage-3", max_retries=0)
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()

View File

@@ -16,6 +16,7 @@ from lancedb.rerankers import (
OpenaiReranker,
JinaReranker,
AnswerdotaiRerankers,
VoyageAIReranker,
)
from lancedb.table import LanceTable
@@ -344,3 +345,14 @@ def test_jina_reranker(tmp_path, use_tantivy):
table, schema = get_test_table(tmp_path, use_tantivy)
reranker = JinaReranker()
_run_test_reranker(reranker, table, "single player experience", None, schema)
@pytest.mark.skipif(
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
)
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_voyageai_reranker(tmp_path, use_tantivy):
pytest.importorskip("voyageai")
reranker = VoyageAIReranker(model_name="rerank-2")
table, schema = get_test_table(tmp_path, use_tantivy)
_run_test_reranker(reranker, table, "single player experience", None, schema)