mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-10 22:02:58 +00:00
feat: add multimodal capabilities for Voyage embedder (#1878)
Co-authored-by: Will Jones <willjones127@gmail.com>
This commit is contained in:
@@ -12,18 +12,22 @@
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
from typing import ClassVar, List, Union
|
||||
from typing import ClassVar, TYPE_CHECKING, List, Union
|
||||
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .base import EmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import api_key_not_found_help, TEXT
|
||||
from .utils import api_key_not_found_help, IMAGES
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import PIL
|
||||
|
||||
|
||||
@register("voyageai")
|
||||
class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
|
||||
class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
"""
|
||||
An embedding function that uses the VoyageAI API
|
||||
|
||||
@@ -36,6 +40,7 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
|
||||
|
||||
* voyage-3
|
||||
* voyage-3-lite
|
||||
* voyage-multimodal-3
|
||||
* voyage-finance-2
|
||||
* voyage-multilingual-2
|
||||
* voyage-law-2
|
||||
@@ -54,7 +59,7 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
|
||||
.create(name="voyage-3")
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = voyageai.SourceField()
|
||||
data: str = voyageai.SourceField()
|
||||
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
|
||||
|
||||
data = [ { "text": "hello world" },
|
||||
@@ -77,6 +82,7 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
|
||||
return 1536
|
||||
elif self.name in [
|
||||
"voyage-3",
|
||||
"voyage-multimodal-3",
|
||||
"voyage-finance-2",
|
||||
"voyage-multilingual-2",
|
||||
"voyage-law-2",
|
||||
@@ -85,19 +91,19 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
|
||||
else:
|
||||
raise ValueError(f"Model {self.name} not supported")
|
||||
|
||||
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
|
||||
return self.compute_source_embeddings(query, input_type="query")
|
||||
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
|
||||
"""
|
||||
Sanitize the input to the embedding function.
|
||||
"""
|
||||
if isinstance(images, (str, bytes)):
|
||||
images = [images]
|
||||
elif isinstance(images, pa.Array):
|
||||
images = images.to_pylist()
|
||||
elif isinstance(images, pa.ChunkedArray):
|
||||
images = images.combine_chunks().to_pylist()
|
||||
return images
|
||||
|
||||
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
|
||||
texts = self.sanitize_input(texts)
|
||||
input_type = (
|
||||
kwargs.get("input_type") or "document"
|
||||
) # assume source input type if not passed by `compute_query_embeddings`
|
||||
return self.generate_embeddings(texts, input_type=input_type)
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray], *args, **kwargs
|
||||
) -> List[np.array]:
|
||||
def generate_text_embeddings(self, text: str, **kwargs) -> np.ndarray:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
@@ -109,15 +115,55 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
|
||||
|
||||
truncation: Optional[bool]
|
||||
"""
|
||||
VoyageAIEmbeddingFunction._init_client()
|
||||
rs = VoyageAIEmbeddingFunction.client.embed(
|
||||
texts=texts, model=self.name, **kwargs
|
||||
)
|
||||
if self.name in ["voyage-multimodal-3"]:
|
||||
rs = VoyageAIEmbeddingFunction._get_client().multimodal_embed(
|
||||
inputs=[[text]], model=self.name, **kwargs
|
||||
)
|
||||
else:
|
||||
rs = VoyageAIEmbeddingFunction._get_client().embed(
|
||||
texts=[text], model=self.name, **kwargs
|
||||
)
|
||||
|
||||
return [emb for emb in rs.embeddings]
|
||||
return rs.embeddings[0]
|
||||
|
||||
def generate_image_embedding(
|
||||
self, image: "PIL.Image.Image", **kwargs
|
||||
) -> np.ndarray:
|
||||
rs = VoyageAIEmbeddingFunction._get_client().multimodal_embed(
|
||||
inputs=[[image]], model=self.name, **kwargs
|
||||
)
|
||||
return rs.embeddings[0]
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
|
||||
) -> List[np.ndarray]:
|
||||
"""
|
||||
Compute the embeddings for a given user query
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : Union[str, PIL.Image.Image]
|
||||
The query to embed. A query can be either text or an image.
|
||||
"""
|
||||
if isinstance(query, str):
|
||||
return [self.generate_text_embeddings(query, input_type="query")]
|
||||
else:
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
if isinstance(query, PIL.Image.Image):
|
||||
return [self.generate_image_embedding(query, input_type="query")]
|
||||
else:
|
||||
raise TypeError("Only text PIL images supported as query")
|
||||
|
||||
def compute_source_embeddings(
|
||||
self, images: IMAGES, *args, **kwargs
|
||||
) -> List[np.array]:
|
||||
images = self.sanitize_input(images)
|
||||
return [
|
||||
self.generate_image_embedding(img, input_type="document") for img in images
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def _init_client():
|
||||
def _get_client():
|
||||
if VoyageAIEmbeddingFunction.client is None:
|
||||
voyageai = attempt_import_or_raise("voyageai")
|
||||
if os.environ.get("VOYAGE_API_KEY") is None:
|
||||
@@ -125,3 +171,4 @@ class VoyageAIEmbeddingFunction(TextEmbeddingFunction):
|
||||
VoyageAIEmbeddingFunction.client = voyageai.Client(
|
||||
os.environ["VOYAGE_API_KEY"]
|
||||
)
|
||||
return VoyageAIEmbeddingFunction.client
|
||||
|
||||
Reference in New Issue
Block a user