mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-07 20:32:59 +00:00
fix(nodejs): better support for f16 and f64 (#1343)
closes https://github.com/lancedb/lancedb/issues/1292 closes https://github.com/lancedb/lancedb/issues/1293
This commit is contained in:
314
nodejs/__test__/embedding.test.ts
Normal file
314
nodejs/__test__/embedding.test.ts
Normal file
@@ -0,0 +1,314 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { connect } from "../lancedb";
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float16,
|
||||
Float32,
|
||||
Float64,
|
||||
Schema,
|
||||
Utf8,
|
||||
} from "../lancedb/arrow";
|
||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||
|
||||
describe("embedding functions", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
getRegistry().reset();
|
||||
});
|
||||
|
||||
it("should be able to create a table with an embedding function", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
},
|
||||
);
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
|
||||
it("should be able to create an empty table with an embedding function", async () => {
|
||||
@register()
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const schema = new Schema([
|
||||
new Field("text", new Utf8(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", new Float32(), true)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createEmptyTable("test", schema, {
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
});
|
||||
const outSchema = await table.schema();
|
||||
expect(outSchema.metadata.get("embedding_functions")).toBeDefined();
|
||||
await table.add([{ text: "hello world" }]);
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
it("should error when appending to a table with an unregistered embedding function", async () => {
|
||||
@register("mock")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = getRegistry().get<MockEmbeddingFunction>("mock")!.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new Float64(),
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const db = await connect(tmpDir.name);
|
||||
await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
schema,
|
||||
},
|
||||
);
|
||||
|
||||
getRegistry().reset();
|
||||
const db2 = await connect(tmpDir.name);
|
||||
|
||||
const tbl = await db2.openTable("test");
|
||||
|
||||
expect(tbl.add([{ id: 3, text: "hello" }])).rejects.toThrow(
|
||||
`Function "mock" not found in registry`,
|
||||
);
|
||||
});
|
||||
test.each([new Float16(), new Float32(), new Float64()])(
|
||||
"should be able to provide manual embeddings with multiple float datatype",
|
||||
async (floatType) => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return floatType;
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const data = [{ text: "hello" }, { text: "hello world" }];
|
||||
|
||||
const schema = new Schema([
|
||||
new Field("vector", new FixedSizeList(3, new Field("item", floatType))),
|
||||
new Field("text", new Utf8()),
|
||||
]);
|
||||
const func = new MockEmbeddingFunction();
|
||||
|
||||
const name = "test";
|
||||
const db = await connect(tmpDir.name);
|
||||
|
||||
const table = await db.createTable(name, data, {
|
||||
schema,
|
||||
embeddingFunction: {
|
||||
sourceColumn: "text",
|
||||
function: func,
|
||||
},
|
||||
});
|
||||
const res = await table.query().toArray();
|
||||
|
||||
expect([...res[0].vector]).toEqual([1, 2, 3]);
|
||||
},
|
||||
);
|
||||
|
||||
test.only.each([new Float16(), new Float32(), new Float64()])(
|
||||
"should be able to provide auto embeddings with multiple float datatypes",
|
||||
async (floatType) => {
|
||||
@register("test1")
|
||||
class MockEmbeddingFunctionWithoutNDims extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
|
||||
embeddingDataType(): Float {
|
||||
return floatType;
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
@register("test")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return floatType;
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = getRegistry().get<MockEmbeddingFunction>("test")!.create();
|
||||
const func2 = getRegistry()
|
||||
.get<MockEmbeddingFunctionWithoutNDims>("test1")!
|
||||
.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(floatType),
|
||||
});
|
||||
|
||||
const schema2 = LanceSchema({
|
||||
text: func2.sourceField(new Utf8()),
|
||||
vector: func2.vectorField({ datatype: floatType, dims: 3 }),
|
||||
});
|
||||
const schema3 = LanceSchema({
|
||||
text: func2.sourceField(new Utf8()),
|
||||
vector: func.vectorField({
|
||||
datatype: new FixedSizeList(3, new Field("item", floatType, true)),
|
||||
dims: 3,
|
||||
}),
|
||||
});
|
||||
|
||||
const expectedSchema = new Schema([
|
||||
new Field("text", new Utf8(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", floatType, true)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
const stringSchema = JSON.stringify(schema, null, 2);
|
||||
const stringSchema2 = JSON.stringify(schema2, null, 2);
|
||||
const stringSchema3 = JSON.stringify(schema3, null, 2);
|
||||
const stringExpectedSchema = JSON.stringify(expectedSchema, null, 2);
|
||||
|
||||
expect(stringSchema).toEqual(stringExpectedSchema);
|
||||
expect(stringSchema2).toEqual(stringExpectedSchema);
|
||||
expect(stringSchema3).toEqual(stringExpectedSchema);
|
||||
},
|
||||
);
|
||||
});
|
||||
@@ -24,17 +24,13 @@ import {
|
||||
Table as ArrowTable,
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float32,
|
||||
Float64,
|
||||
Int32,
|
||||
Int64,
|
||||
Schema,
|
||||
Utf8,
|
||||
makeArrowTable,
|
||||
} from "../lancedb/arrow";
|
||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||
import { Index } from "../lancedb/indices";
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
@@ -45,6 +41,7 @@ describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
|
||||
const schema = new arrow.Schema([
|
||||
new arrow.Field("id", new arrow.Float64(), true),
|
||||
]);
|
||||
|
||||
beforeEach(async () => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
const conn = await connect(tmpDir.name);
|
||||
@@ -96,6 +93,38 @@ describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
|
||||
expect(await table.countRows("id == 10")).toBe(1);
|
||||
});
|
||||
|
||||
// https://github.com/lancedb/lancedb/issues/1293
|
||||
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])(
|
||||
"can create empty table with non default float type: %s",
|
||||
async (floatType) => {
|
||||
const db = await connect(tmpDir.name);
|
||||
|
||||
const data = [
|
||||
{ text: "hello", vector: Array(512).fill(1.0) },
|
||||
{ text: "hello world", vector: Array(512).fill(1.0) },
|
||||
];
|
||||
const f64Schema = new arrow.Schema([
|
||||
new arrow.Field("text", new arrow.Utf8(), true),
|
||||
new arrow.Field(
|
||||
"vector",
|
||||
new arrow.FixedSizeList(512, new arrow.Field("item", floatType)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
|
||||
const f64Table = await db.createEmptyTable("f64", f64Schema, {
|
||||
mode: "overwrite",
|
||||
});
|
||||
try {
|
||||
await f64Table.add(data);
|
||||
const res = await f64Table.query().toArray();
|
||||
expect(res.length).toBe(2);
|
||||
} catch (e) {
|
||||
expect(e).toBeUndefined();
|
||||
}
|
||||
},
|
||||
);
|
||||
|
||||
it("should return the table as an instance of an arrow table", async () => {
|
||||
const arrowTbl = await table.toArrow();
|
||||
expect(arrowTbl).toBeInstanceOf(ArrowTable);
|
||||
@@ -437,161 +466,6 @@ describe("when dealing with versioning", () => {
|
||||
});
|
||||
});
|
||||
|
||||
describe("embedding functions", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
it("should be able to create a table with an embedding function", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
},
|
||||
);
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
|
||||
it("should be able to create an empty table with an embedding function", async () => {
|
||||
@register()
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const schema = new Schema([
|
||||
new Field("text", new Utf8(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", new Float32(), true)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createEmptyTable("test", schema, {
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
});
|
||||
const outSchema = await table.schema();
|
||||
expect(outSchema.metadata.get("embedding_functions")).toBeDefined();
|
||||
await table.add([{ text: "hello world" }]);
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
it("should error when appending to a table with an unregistered embedding function", async () => {
|
||||
@register("mock")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = getRegistry().get<MockEmbeddingFunction>("mock")!.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new arrow.Float64(),
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const db = await connect(tmpDir.name);
|
||||
await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
schema,
|
||||
},
|
||||
);
|
||||
|
||||
getRegistry().reset();
|
||||
const db2 = await connect(tmpDir.name);
|
||||
|
||||
const tbl = await db2.openTable("test");
|
||||
|
||||
expect(tbl.add([{ id: 3, text: "hello" }])).rejects.toThrow(
|
||||
`Function "mock" not found in registry`,
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("when optimizing a dataset", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
|
||||
Reference in New Issue
Block a user