mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-09 13:22:58 +00:00
feat: js embedding registry (#1308)
--------- Co-authored-by: Will Jones <willjones127@gmail.com>
This commit is contained in:
@@ -31,6 +31,7 @@ import {
|
||||
Schema,
|
||||
Struct,
|
||||
type Table,
|
||||
Type,
|
||||
Utf8,
|
||||
tableFromIPC,
|
||||
} from "apache-arrow";
|
||||
@@ -51,7 +52,12 @@ import {
|
||||
makeArrowTable,
|
||||
makeEmptyTable,
|
||||
} from "../lancedb/arrow";
|
||||
import { type EmbeddingFunction } from "../lancedb/embedding/embedding_function";
|
||||
import {
|
||||
EmbeddingFunction,
|
||||
FieldOptions,
|
||||
FunctionOptions,
|
||||
} from "../lancedb/embedding/embedding_function";
|
||||
import { EmbeddingFunctionConfig } from "../lancedb/embedding/registry";
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
function sampleRecords(): Array<Record<string, any>> {
|
||||
@@ -280,23 +286,46 @@ describe("The function makeArrowTable", function () {
|
||||
});
|
||||
});
|
||||
|
||||
class DummyEmbedding implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = "string";
|
||||
public readonly embeddingDimension = 2;
|
||||
public readonly embeddingDataType = new Float16();
|
||||
class DummyEmbedding extends EmbeddingFunction<string> {
|
||||
toJSON(): Partial<FunctionOptions> {
|
||||
return {};
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
return data.map(() => [0.0, 0.0]);
|
||||
}
|
||||
|
||||
ndims(): number {
|
||||
return 2;
|
||||
}
|
||||
|
||||
embeddingDataType() {
|
||||
return new Float16();
|
||||
}
|
||||
}
|
||||
|
||||
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = "string";
|
||||
class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> {
|
||||
toJSON(): Partial<FunctionOptions> {
|
||||
return {};
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
embeddingDataType(): Float {
|
||||
return new Float16();
|
||||
}
|
||||
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
return data.map(() => [0.0, 0.0]);
|
||||
}
|
||||
}
|
||||
const dummyEmbeddingConfig: EmbeddingFunctionConfig = {
|
||||
sourceColumn: "string",
|
||||
function: new DummyEmbedding(),
|
||||
};
|
||||
|
||||
const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = {
|
||||
sourceColumn: "string",
|
||||
function: new DummyEmbeddingWithNoDimension(),
|
||||
};
|
||||
|
||||
describe("convertToTable", function () {
|
||||
it("will infer data types correctly", async function () {
|
||||
@@ -331,7 +360,7 @@ describe("convertToTable", function () {
|
||||
|
||||
it("will apply embeddings", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, new DummyEmbedding());
|
||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
@@ -340,7 +369,7 @@ describe("convertToTable", function () {
|
||||
|
||||
it("will fail if missing the embedding source column", async function () {
|
||||
await expect(
|
||||
convertToTable([{ id: 1 }], new DummyEmbedding()),
|
||||
convertToTable([{ id: 1 }], dummyEmbeddingConfig),
|
||||
).rejects.toThrow("'string' was not present");
|
||||
});
|
||||
|
||||
@@ -351,7 +380,7 @@ describe("convertToTable", function () {
|
||||
const table = makeEmptyTable(schema);
|
||||
|
||||
// If the embedding specifies the dimension we are fine
|
||||
await fromTableToBuffer(table, new DummyEmbedding());
|
||||
await fromTableToBuffer(table, dummyEmbeddingConfig);
|
||||
|
||||
// We can also supply a schema and should be ok
|
||||
const schemaWithEmbedding = new Schema([
|
||||
@@ -364,13 +393,13 @@ describe("convertToTable", function () {
|
||||
]);
|
||||
await fromTableToBuffer(
|
||||
table,
|
||||
new DummyEmbeddingWithNoDimension(),
|
||||
dummyEmbeddingConfigWithNoDimension,
|
||||
schemaWithEmbedding,
|
||||
);
|
||||
|
||||
// Otherwise we will get an error
|
||||
await expect(
|
||||
fromTableToBuffer(table, new DummyEmbeddingWithNoDimension()),
|
||||
fromTableToBuffer(table, dummyEmbeddingConfigWithNoDimension),
|
||||
).rejects.toThrow("does not specify `embeddingDimension`");
|
||||
});
|
||||
|
||||
@@ -383,7 +412,7 @@ describe("convertToTable", function () {
|
||||
false,
|
||||
),
|
||||
]);
|
||||
const table = await convertToTable([], new DummyEmbedding(), { schema });
|
||||
const table = await convertToTable([], dummyEmbeddingConfig, { schema });
|
||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
@@ -393,16 +422,17 @@ describe("convertToTable", function () {
|
||||
it("will complain if embeddings present but schema missing embedding column", async function () {
|
||||
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
||||
await expect(
|
||||
convertToTable([], new DummyEmbedding(), { schema }),
|
||||
convertToTable([], dummyEmbeddingConfig, { schema }),
|
||||
).rejects.toThrow("column vector was missing");
|
||||
});
|
||||
|
||||
it("will provide a nice error if run twice", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, new DummyEmbedding());
|
||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||
|
||||
// fromTableToBuffer will try and apply the embeddings again
|
||||
await expect(
|
||||
fromTableToBuffer(table, new DummyEmbedding()),
|
||||
fromTableToBuffer(table, dummyEmbeddingConfig),
|
||||
).rejects.toThrow("already existed");
|
||||
});
|
||||
});
|
||||
|
||||
@@ -13,7 +13,6 @@
|
||||
// limitations under the License.
|
||||
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { Connection, connect } from "../lancedb";
|
||||
|
||||
describe("when connecting", () => {
|
||||
|
||||
166
nodejs/__test__/registry.test.ts
Normal file
166
nodejs/__test__/registry.test.ts
Normal file
@@ -0,0 +1,166 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
import { Float, Float32, Int32, Utf8, Vector } from "apache-arrow";
|
||||
import * as tmp from "tmp";
|
||||
import { connect } from "../lancedb";
|
||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||
|
||||
describe("LanceSchema", () => {
|
||||
test("should preserve input order", async () => {
|
||||
const schema = LanceSchema({
|
||||
id: new Int32(),
|
||||
text: new Utf8(),
|
||||
vector: new Float32(),
|
||||
});
|
||||
expect(schema.fields.map((x) => x.name)).toEqual(["id", "text", "vector"]);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Registry", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
getRegistry().reset();
|
||||
});
|
||||
|
||||
it("should register a new item to the registry", async () => {
|
||||
@register("mock-embedding")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
const func = getRegistry()
|
||||
.get<MockEmbeddingFunction>("mock-embedding")!
|
||||
.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new Int32(),
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{ schema },
|
||||
);
|
||||
const expected = [
|
||||
[1, 2, 3],
|
||||
[1, 2, 3],
|
||||
];
|
||||
const actual = await table.query().toArrow();
|
||||
const vectors = actual
|
||||
.getChild("vector")
|
||||
?.toArray()
|
||||
.map((x: unknown) => {
|
||||
if (x instanceof Vector) {
|
||||
return [...x];
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
});
|
||||
expect(vectors).toEqual(expected);
|
||||
});
|
||||
test("should error if registering with the same name", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
register("mock-embedding")(MockEmbeddingFunction);
|
||||
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
|
||||
'Embedding function with alias "mock-embedding" already exists',
|
||||
);
|
||||
});
|
||||
test("schema should contain correct metadata", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {
|
||||
someText: "hello",
|
||||
};
|
||||
}
|
||||
constructor() {
|
||||
super();
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return data.map(() => [1, 2, 3]);
|
||||
}
|
||||
}
|
||||
const func = new MockEmbeddingFunction();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new Int32(),
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
const expectedMetadata = new Map<string, string>([
|
||||
[
|
||||
"embedding_functions",
|
||||
JSON.stringify([
|
||||
{
|
||||
sourceColumn: "text",
|
||||
vectorColumn: "vector",
|
||||
name: "MockEmbeddingFunction",
|
||||
model: { someText: "hello" },
|
||||
},
|
||||
]),
|
||||
],
|
||||
]);
|
||||
expect(schema.metadata).toEqual(expectedMetadata);
|
||||
});
|
||||
});
|
||||
@@ -19,14 +19,18 @@ import * as tmp from "tmp";
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float32,
|
||||
Float64,
|
||||
Int32,
|
||||
Int64,
|
||||
Schema,
|
||||
Utf8,
|
||||
} from "apache-arrow";
|
||||
import { Table, connect } from "../lancedb";
|
||||
import { makeArrowTable } from "../lancedb/arrow";
|
||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||
import { Index } from "../lancedb/indices";
|
||||
|
||||
describe("Given a table", () => {
|
||||
@@ -420,6 +424,161 @@ describe("when dealing with versioning", () => {
|
||||
});
|
||||
});
|
||||
|
||||
describe("embedding functions", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
it("should be able to create a table with an embedding function", async () => {
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
},
|
||||
);
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
|
||||
it("should be able to create an empty table with an embedding function", async () => {
|
||||
@register()
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const schema = new Schema([
|
||||
new Field("text", new Utf8(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", new Float32(), true)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
|
||||
const func = new MockEmbeddingFunction();
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createEmptyTable("test", schema, {
|
||||
embeddingFunction: {
|
||||
function: func,
|
||||
sourceColumn: "text",
|
||||
},
|
||||
});
|
||||
const outSchema = await table.schema();
|
||||
expect(outSchema.metadata.get("embedding_functions")).toBeDefined();
|
||||
await table.add([{ text: "hello world" }]);
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||
const arr = (await table.query().toArray()) as any;
|
||||
expect(arr[0].vector).toBeDefined();
|
||||
|
||||
// we round trip through JSON to make sure the vector properly gets converted to an array
|
||||
// otherwise it'll be a TypedArray or Vector
|
||||
const vector0 = JSON.parse(JSON.stringify(arr[0].vector));
|
||||
expect(vector0).toEqual([1, 2, 3]);
|
||||
});
|
||||
it("should error when appending to a table with an unregistered embedding function", async () => {
|
||||
@register("mock")
|
||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||
toJSON(): object {
|
||||
return {};
|
||||
}
|
||||
ndims() {
|
||||
return 3;
|
||||
}
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
async computeQueryEmbeddings(_data: string) {
|
||||
return [1, 2, 3];
|
||||
}
|
||||
async computeSourceEmbeddings(data: string[]) {
|
||||
return Array.from({ length: data.length }).fill([
|
||||
1, 2, 3,
|
||||
]) as number[][];
|
||||
}
|
||||
}
|
||||
const func = getRegistry().get<MockEmbeddingFunction>("mock")!.create();
|
||||
|
||||
const schema = LanceSchema({
|
||||
id: new Float64(),
|
||||
text: func.sourceField(new Utf8()),
|
||||
vector: func.vectorField(),
|
||||
});
|
||||
|
||||
const db = await connect(tmpDir.name);
|
||||
await db.createTable(
|
||||
"test",
|
||||
[
|
||||
{ id: 1, text: "hello" },
|
||||
{ id: 2, text: "world" },
|
||||
],
|
||||
{
|
||||
schema,
|
||||
},
|
||||
);
|
||||
|
||||
getRegistry().reset();
|
||||
const db2 = await connect(tmpDir.name);
|
||||
|
||||
const tbl = await db2.openTable("test");
|
||||
|
||||
expect(tbl.add([{ id: 3, text: "hello" }])).rejects.toThrow(
|
||||
`Function "mock" not found in registry`,
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("when optimizing a dataset", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
|
||||
@@ -48,7 +48,7 @@
|
||||
"noUnsafeFinally": "error",
|
||||
"noUnsafeOptionalChaining": "error",
|
||||
"noUnusedLabels": "error",
|
||||
"noUnusedVariables": "error",
|
||||
"noUnusedVariables": "warn",
|
||||
"useIsNan": "error",
|
||||
"useValidForDirection": "error",
|
||||
"useYield": "error"
|
||||
@@ -101,7 +101,13 @@
|
||||
},
|
||||
"overrides": [
|
||||
{
|
||||
"include": ["**/*.ts", "**/*.tsx", "**/*.mts", "**/*.cts"],
|
||||
"include": [
|
||||
"**/*.ts",
|
||||
"**/*.tsx",
|
||||
"**/*.mts",
|
||||
"**/*.cts",
|
||||
"__test__/*.test.ts"
|
||||
],
|
||||
"linter": {
|
||||
"rules": {
|
||||
"correctness": {
|
||||
|
||||
@@ -34,6 +34,7 @@ import {
|
||||
vectorFromArray,
|
||||
} from "apache-arrow";
|
||||
import { type EmbeddingFunction } from "./embedding/embedding_function";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
|
||||
import { sanitizeSchema } from "./sanitize";
|
||||
|
||||
/** Data type accepted by NodeJS SDK */
|
||||
@@ -198,6 +199,7 @@ export class MakeArrowTableOptions {
|
||||
export function makeArrowTable(
|
||||
data: Array<Record<string, unknown>>,
|
||||
options?: Partial<MakeArrowTableOptions>,
|
||||
metadata?: Map<string, string>,
|
||||
): ArrowTable {
|
||||
if (
|
||||
data.length === 0 &&
|
||||
@@ -290,20 +292,41 @@ export function makeArrowTable(
|
||||
// `new ArrowTable(schema, batches)` which does not do any schema inference
|
||||
const firstTable = new ArrowTable(columns);
|
||||
const batchesFixed = firstTable.batches.map(
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
(batch) => new RecordBatch(opt.schema!, batch.data),
|
||||
);
|
||||
return new ArrowTable(opt.schema, batchesFixed);
|
||||
} else {
|
||||
return new ArrowTable(columns);
|
||||
let schema: Schema;
|
||||
if (metadata !== undefined) {
|
||||
let schemaMetadata = opt.schema.metadata;
|
||||
if (schemaMetadata.size === 0) {
|
||||
schemaMetadata = metadata;
|
||||
} else {
|
||||
for (const [key, entry] of schemaMetadata.entries()) {
|
||||
schemaMetadata.set(key, entry);
|
||||
}
|
||||
}
|
||||
|
||||
schema = new Schema(opt.schema.fields, schemaMetadata);
|
||||
} else {
|
||||
schema = opt.schema;
|
||||
}
|
||||
return new ArrowTable(schema, batchesFixed);
|
||||
}
|
||||
const tbl = new ArrowTable(columns);
|
||||
if (metadata !== undefined) {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
(<any>tbl.schema).metadata = metadata;
|
||||
}
|
||||
return tbl;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an empty Arrow table with the provided schema
|
||||
*/
|
||||
export function makeEmptyTable(schema: Schema): ArrowTable {
|
||||
return makeArrowTable([], { schema });
|
||||
export function makeEmptyTable(
|
||||
schema: Schema,
|
||||
metadata?: Map<string, string>,
|
||||
): ArrowTable {
|
||||
return makeArrowTable([], { schema }, metadata);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -375,13 +398,75 @@ function makeVector(
|
||||
}
|
||||
}
|
||||
|
||||
/** Helper function to apply embeddings from metadata to an input table */
|
||||
async function applyEmbeddingsFromMetadata(
|
||||
table: ArrowTable,
|
||||
schema: Schema,
|
||||
): Promise<ArrowTable> {
|
||||
const registry = getRegistry();
|
||||
const functions = registry.parseFunctions(schema.metadata);
|
||||
|
||||
const columns = Object.fromEntries(
|
||||
table.schema.fields.map((field) => [
|
||||
field.name,
|
||||
table.getChild(field.name)!,
|
||||
]),
|
||||
);
|
||||
|
||||
for (const functionEntry of functions.values()) {
|
||||
const sourceColumn = columns[functionEntry.sourceColumn];
|
||||
const destColumn = functionEntry.vectorColumn ?? "vector";
|
||||
if (sourceColumn === undefined) {
|
||||
throw new Error(
|
||||
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
|
||||
);
|
||||
}
|
||||
if (columns[destColumn] !== undefined) {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
|
||||
);
|
||||
}
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error(
|
||||
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
|
||||
);
|
||||
}
|
||||
const values = sourceColumn.toArray();
|
||||
|
||||
const vectors =
|
||||
await functionEntry.function.computeSourceEmbeddings(values);
|
||||
if (vectors.length !== values.length) {
|
||||
throw new Error(
|
||||
"Embedding function did not return an embedding for each input element",
|
||||
);
|
||||
}
|
||||
let destType: DataType;
|
||||
const dtype = schema.fields.find((f) => f.name === destColumn)!.type;
|
||||
if (dtype instanceof FixedSizeList) {
|
||||
destType = dtype;
|
||||
} else {
|
||||
throw new Error(
|
||||
"Expected FixedSizeList as datatype for vector field, instead got: " +
|
||||
dtype,
|
||||
);
|
||||
}
|
||||
|
||||
const vector = makeVector(vectors, destType);
|
||||
columns[destColumn] = vector;
|
||||
}
|
||||
const newTable = new ArrowTable(columns);
|
||||
return alignTable(newTable, schema);
|
||||
}
|
||||
|
||||
/** Helper function to apply embeddings to an input table */
|
||||
async function applyEmbeddings<T>(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<ArrowTable> {
|
||||
if (embeddings == null) {
|
||||
if (schema?.metadata.has("embedding_functions")) {
|
||||
return applyEmbeddingsFromMetadata(table, schema!);
|
||||
} else if (embeddings == null || embeddings === undefined) {
|
||||
return table;
|
||||
}
|
||||
|
||||
@@ -399,8 +484,9 @@ async function applyEmbeddings<T>(
|
||||
const newColumns = Object.fromEntries(colEntries);
|
||||
|
||||
const sourceColumn = newColumns[embeddings.sourceColumn];
|
||||
const destColumn = embeddings.destColumn ?? "vector";
|
||||
const innerDestType = embeddings.embeddingDataType ?? new Float32();
|
||||
const destColumn = embeddings.vectorColumn ?? "vector";
|
||||
const innerDestType =
|
||||
embeddings.function.embeddingDataType() ?? new Float32();
|
||||
if (sourceColumn === undefined) {
|
||||
throw new Error(
|
||||
`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`,
|
||||
@@ -414,11 +500,9 @@ async function applyEmbeddings<T>(
|
||||
// if we call convertToTable with 0 records and a schema that includes the embedding
|
||||
return table;
|
||||
}
|
||||
if (embeddings.embeddingDimension !== undefined) {
|
||||
const destType = newVectorType(
|
||||
embeddings.embeddingDimension,
|
||||
innerDestType,
|
||||
);
|
||||
const dimensions = embeddings.function.ndims();
|
||||
if (dimensions !== undefined) {
|
||||
const destType = newVectorType(dimensions, innerDestType);
|
||||
newColumns[destColumn] = makeVector([], destType);
|
||||
} else if (schema != null) {
|
||||
const destField = schema.fields.find((f) => f.name === destColumn);
|
||||
@@ -446,7 +530,9 @@ async function applyEmbeddings<T>(
|
||||
);
|
||||
}
|
||||
const values = sourceColumn.toArray();
|
||||
const vectors = await embeddings.embed(values as T[]);
|
||||
const vectors = await embeddings.function.computeSourceEmbeddings(
|
||||
values as T[],
|
||||
);
|
||||
if (vectors.length !== values.length) {
|
||||
throw new Error(
|
||||
"Embedding function did not return an embedding for each input element",
|
||||
@@ -486,9 +572,9 @@ async function applyEmbeddings<T>(
|
||||
* embedding columns. If no schema is provded then embedding columns will
|
||||
* be placed at the end of the table, after all of the input columns.
|
||||
*/
|
||||
export async function convertToTable<T>(
|
||||
export async function convertToTable(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
makeTableOptions?: Partial<MakeArrowTableOptions>,
|
||||
): Promise<ArrowTable> {
|
||||
const table = makeArrowTable(data, makeTableOptions);
|
||||
@@ -496,7 +582,7 @@ export async function convertToTable<T>(
|
||||
}
|
||||
|
||||
/** Creates the Arrow Type for a Vector column with dimension `dim` */
|
||||
function newVectorType<T extends Float>(
|
||||
export function newVectorType<T extends Float>(
|
||||
dim: number,
|
||||
innerType: T,
|
||||
): FixedSizeList<T> {
|
||||
@@ -513,9 +599,9 @@ function newVectorType<T extends Float>(
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToBuffer<T>(
|
||||
export async function fromRecordsToBuffer(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -533,9 +619,9 @@ export async function fromRecordsToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToStreamBuffer<T>(
|
||||
export async function fromRecordsToStreamBuffer(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -554,9 +640,9 @@ export async function fromRecordsToStreamBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToBuffer<T>(
|
||||
export async function fromTableToBuffer(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -575,9 +661,9 @@ export async function fromTableToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromDataToBuffer<T>(
|
||||
export async function fromDataToBuffer(
|
||||
data: Data,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
@@ -586,8 +672,8 @@ export async function fromDataToBuffer<T>(
|
||||
if (data instanceof ArrowTable) {
|
||||
return fromTableToBuffer(data, embeddings, schema);
|
||||
} else {
|
||||
const table = await convertToTable(data);
|
||||
return fromTableToBuffer(table, embeddings, schema);
|
||||
const table = await convertToTable(data, embeddings, { schema });
|
||||
return fromTableToBuffer(table);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -599,9 +685,9 @@ export async function fromDataToBuffer<T>(
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToStreamBuffer<T>(
|
||||
export async function fromTableToStreamBuffer(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
embeddings?: EmbeddingFunctionConfig,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
|
||||
@@ -667,7 +753,20 @@ function validateSchemaEmbeddings(
|
||||
for (const field of schema.fields) {
|
||||
if (field.type instanceof FixedSizeList) {
|
||||
if (data.length !== 0 && data?.[0]?.[field.name] === undefined) {
|
||||
missingEmbeddingFields.push(field);
|
||||
if (schema.metadata.has("embedding_functions")) {
|
||||
const embeddings = JSON.parse(
|
||||
schema.metadata.get("embedding_functions")!,
|
||||
);
|
||||
if (
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we don't know the type of `f`
|
||||
embeddings.find((f: any) => f["vectorColumn"] === field.name) ===
|
||||
undefined
|
||||
) {
|
||||
missingEmbeddingFields.push(field);
|
||||
}
|
||||
} else {
|
||||
missingEmbeddingFields.push(field);
|
||||
}
|
||||
} else {
|
||||
fields.push(field);
|
||||
}
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
|
||||
import { Table as ArrowTable, Schema } from "apache-arrow";
|
||||
import { fromTableToBuffer, makeArrowTable, makeEmptyTable } from "./arrow";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
|
||||
import { ConnectionOptions, Connection as LanceDbConnection } from "./native";
|
||||
import { Table } from "./table";
|
||||
|
||||
@@ -65,6 +66,8 @@ export interface CreateTableOptions {
|
||||
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||
*/
|
||||
storageOptions?: Record<string, string>;
|
||||
schema?: Schema;
|
||||
embeddingFunction?: EmbeddingFunctionConfig;
|
||||
}
|
||||
|
||||
export interface OpenTableOptions {
|
||||
@@ -174,6 +177,7 @@ export class Connection {
|
||||
cleanseStorageOptions(options?.storageOptions),
|
||||
options?.indexCacheSize,
|
||||
);
|
||||
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
@@ -199,15 +203,21 @@ export class Connection {
|
||||
if (data instanceof ArrowTable) {
|
||||
table = data;
|
||||
} else {
|
||||
table = makeArrowTable(data);
|
||||
table = makeArrowTable(data, options);
|
||||
}
|
||||
const buf = await fromTableToBuffer(table);
|
||||
|
||||
const buf = await fromTableToBuffer(
|
||||
table,
|
||||
options?.embeddingFunction,
|
||||
options?.schema,
|
||||
);
|
||||
const innerTable = await this.inner.createTable(
|
||||
name,
|
||||
buf,
|
||||
mode,
|
||||
cleanseStorageOptions(options?.storageOptions),
|
||||
);
|
||||
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
@@ -227,8 +237,14 @@ export class Connection {
|
||||
if (mode === "create" && existOk) {
|
||||
mode = "exist_ok";
|
||||
}
|
||||
let metadata: Map<string, string> | undefined = undefined;
|
||||
if (options?.embeddingFunction !== undefined) {
|
||||
const embeddingFunction = options.embeddingFunction;
|
||||
const registry = getRegistry();
|
||||
metadata = registry.getTableMetadata([embeddingFunction]);
|
||||
}
|
||||
|
||||
const table = makeEmptyTable(schema);
|
||||
const table = makeEmptyTable(schema, metadata);
|
||||
const buf = await fromTableToBuffer(table);
|
||||
const innerTable = await this.inner.createEmptyTable(
|
||||
name,
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
@@ -12,67 +12,141 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { type Float } from "apache-arrow";
|
||||
import { DataType, Field, FixedSizeList, Float, Float32 } from "apache-arrow";
|
||||
import "reflect-metadata";
|
||||
import { newVectorType } from "../arrow";
|
||||
|
||||
/**
|
||||
* Options for a given embedding function
|
||||
*/
|
||||
export interface FunctionOptions {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: options can be anything
|
||||
[key: string]: any;
|
||||
}
|
||||
|
||||
/**
|
||||
* An embedding function that automatically creates vector representation for a given column.
|
||||
*/
|
||||
export interface EmbeddingFunction<T> {
|
||||
export abstract class EmbeddingFunction<
|
||||
// biome-ignore lint/suspicious/noExplicitAny: we don't know what the implementor will do
|
||||
T = any,
|
||||
M extends FunctionOptions = FunctionOptions,
|
||||
> {
|
||||
/**
|
||||
* The name of the column that will be used as input for the Embedding Function.
|
||||
* Convert the embedding function to a JSON object
|
||||
* It is used to serialize the embedding function to the schema
|
||||
* It's important that any object returned by this method contains all the necessary
|
||||
* information to recreate the embedding function
|
||||
*
|
||||
* It should return the same object that was passed to the constructor
|
||||
* If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
|
||||
*
|
||||
* @example
|
||||
* ```ts
|
||||
* class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
* constructor(options: {model: string, timeout: number}) {
|
||||
* super();
|
||||
* this.model = options.model;
|
||||
* this.timeout = options.timeout;
|
||||
* }
|
||||
* toJSON() {
|
||||
* return {
|
||||
* model: this.model,
|
||||
* timeout: this.timeout,
|
||||
* };
|
||||
* }
|
||||
* ```
|
||||
*/
|
||||
sourceColumn: string;
|
||||
abstract toJSON(): Partial<M>;
|
||||
|
||||
/**
|
||||
* The data type of the embedding
|
||||
* sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
*
|
||||
* The embedding function should return `number`. This will be converted into
|
||||
* an Arrow float array. By default this will be Float32 but this property can
|
||||
* be used to control the conversion.
|
||||
* @param optionsOrDatatype - The options for the field or the datatype
|
||||
*
|
||||
* @see {@link lancedb.LanceSchema}
|
||||
*/
|
||||
embeddingDataType?: Float;
|
||||
sourceField(
|
||||
optionsOrDatatype: Partial<FieldOptions> | DataType,
|
||||
): [DataType, Map<string, EmbeddingFunction>] {
|
||||
const datatype =
|
||||
optionsOrDatatype instanceof DataType
|
||||
? optionsOrDatatype
|
||||
: optionsOrDatatype?.datatype;
|
||||
if (!datatype) {
|
||||
throw new Error("Datatype is required");
|
||||
}
|
||||
const metadata = new Map<string, EmbeddingFunction>();
|
||||
metadata.set("source_column_for", this);
|
||||
|
||||
return [datatype, metadata];
|
||||
}
|
||||
|
||||
/**
|
||||
* The dimension of the embedding
|
||||
* vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||
*
|
||||
* This is optional, normally this can be determined by looking at the results of
|
||||
* `embed`. If this is not specified, and there is an attempt to apply the embedding
|
||||
* to an empty table, then that process will fail.
|
||||
* @param options - The options for the field
|
||||
*
|
||||
* @see {@link lancedb.LanceSchema}
|
||||
*/
|
||||
embeddingDimension?: number;
|
||||
vectorField(
|
||||
options?: Partial<FieldOptions>,
|
||||
): [DataType, Map<string, EmbeddingFunction>] {
|
||||
let dtype: DataType;
|
||||
const dims = this.ndims() ?? options?.dims;
|
||||
if (!options?.datatype) {
|
||||
if (dims === undefined) {
|
||||
throw new Error("ndims is required for vector field");
|
||||
}
|
||||
dtype = new FixedSizeList(dims, new Field("item", new Float32(), true));
|
||||
} else {
|
||||
if (options.datatype instanceof FixedSizeList) {
|
||||
dtype = options.datatype;
|
||||
} else if (options.datatype instanceof Float) {
|
||||
if (dims === undefined) {
|
||||
throw new Error("ndims is required for vector field");
|
||||
}
|
||||
dtype = newVectorType(dims, options.datatype);
|
||||
} else {
|
||||
throw new Error(
|
||||
"Expected FixedSizeList or Float as datatype for vector field",
|
||||
);
|
||||
}
|
||||
}
|
||||
const metadata = new Map<string, EmbeddingFunction>();
|
||||
metadata.set("vector_column_for", this);
|
||||
|
||||
/**
|
||||
* The name of the column that will contain the embedding
|
||||
*
|
||||
* By default this is "vector"
|
||||
*/
|
||||
destColumn?: string;
|
||||
return [dtype, metadata];
|
||||
}
|
||||
|
||||
/**
|
||||
* Should the source column be excluded from the resulting table
|
||||
*
|
||||
* By default the source column is included. Set this to true and
|
||||
* only the embedding will be stored.
|
||||
*/
|
||||
excludeSource?: boolean;
|
||||
/** The number of dimensions of the embeddings */
|
||||
ndims(): number | undefined {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
/** The datatype of the embeddings */
|
||||
abstract embeddingDataType(): Float;
|
||||
|
||||
/**
|
||||
* Creates a vector representation for the given values.
|
||||
*/
|
||||
embed: (data: T[]) => Promise<number[][]>;
|
||||
abstract computeSourceEmbeddings(
|
||||
data: T[],
|
||||
): Promise<number[][] | Float32Array[] | Float64Array[]>;
|
||||
|
||||
/**
|
||||
Compute the embeddings for a single query
|
||||
*/
|
||||
async computeQueryEmbeddings(
|
||||
data: T,
|
||||
): Promise<number[] | Float32Array | Float64Array> {
|
||||
return this.computeSourceEmbeddings([data]).then(
|
||||
(embeddings) => embeddings[0],
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/** Test if the input seems to be an embedding function */
|
||||
export function isEmbeddingFunction<T>(
|
||||
value: unknown,
|
||||
): value is EmbeddingFunction<T> {
|
||||
if (typeof value !== "object" || value === null) {
|
||||
return false;
|
||||
}
|
||||
if (!("sourceColumn" in value) || !("embed" in value)) {
|
||||
return false;
|
||||
}
|
||||
return (
|
||||
typeof value.sourceColumn === "string" && typeof value.embed === "function"
|
||||
);
|
||||
export interface FieldOptions<T extends DataType = DataType> {
|
||||
datatype: T;
|
||||
dims?: number;
|
||||
}
|
||||
|
||||
@@ -1,2 +1,105 @@
|
||||
export { EmbeddingFunction, isEmbeddingFunction } from "./embedding_function";
|
||||
export { OpenAIEmbeddingFunction } from "./openai";
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { DataType, Field, Schema } from "apache-arrow";
|
||||
import { EmbeddingFunction } from "./embedding_function";
|
||||
import { EmbeddingFunctionConfig, getRegistry } from "./registry";
|
||||
|
||||
export { EmbeddingFunction } from "./embedding_function";
|
||||
export * from "./openai";
|
||||
|
||||
/**
|
||||
* Create a schema with embedding functions.
|
||||
*
|
||||
* @param fields
|
||||
* @returns Schema
|
||||
* @example
|
||||
* ```ts
|
||||
* class MyEmbeddingFunction extends EmbeddingFunction {
|
||||
* // ...
|
||||
* }
|
||||
* const func = new MyEmbeddingFunction();
|
||||
* const schema = LanceSchema({
|
||||
* id: new Int32(),
|
||||
* text: func.sourceField(new Utf8()),
|
||||
* vector: func.vectorField(),
|
||||
* // optional: specify the datatype and/or dimensions
|
||||
* vector2: func.vectorField({ datatype: new Float32(), dims: 3}),
|
||||
* });
|
||||
*
|
||||
* const table = await db.createTable("my_table", data, { schema });
|
||||
* ```
|
||||
*/
|
||||
export function LanceSchema(
|
||||
fields: Record<string, [DataType, Map<string, EmbeddingFunction>] | DataType>,
|
||||
): Schema {
|
||||
const arrowFields: Field[] = [];
|
||||
|
||||
const embeddingFunctions = new Map<
|
||||
EmbeddingFunction,
|
||||
Partial<EmbeddingFunctionConfig>
|
||||
>();
|
||||
Object.entries(fields).forEach(([key, value]) => {
|
||||
if (value instanceof DataType) {
|
||||
arrowFields.push(new Field(key, value, true));
|
||||
} else {
|
||||
const [dtype, metadata] = value;
|
||||
arrowFields.push(new Field(key, dtype, true));
|
||||
parseEmbeddingFunctions(embeddingFunctions, key, metadata);
|
||||
}
|
||||
});
|
||||
const registry = getRegistry();
|
||||
const metadata = registry.getTableMetadata(
|
||||
Array.from(embeddingFunctions.values()) as EmbeddingFunctionConfig[],
|
||||
);
|
||||
const schema = new Schema(arrowFields, metadata);
|
||||
return schema;
|
||||
}
|
||||
|
||||
function parseEmbeddingFunctions(
|
||||
embeddingFunctions: Map<EmbeddingFunction, Partial<EmbeddingFunctionConfig>>,
|
||||
key: string,
|
||||
metadata: Map<string, EmbeddingFunction>,
|
||||
): void {
|
||||
if (metadata.has("source_column_for")) {
|
||||
const embedFunction = metadata.get("source_column_for")!;
|
||||
const current = embeddingFunctions.get(embedFunction);
|
||||
if (current !== undefined) {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
...current,
|
||||
sourceColumn: key,
|
||||
});
|
||||
} else {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
sourceColumn: key,
|
||||
function: embedFunction,
|
||||
});
|
||||
}
|
||||
} else if (metadata.has("vector_column_for")) {
|
||||
const embedFunction = metadata.get("vector_column_for")!;
|
||||
|
||||
const current = embeddingFunctions.get(embedFunction);
|
||||
if (current !== undefined) {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
...current,
|
||||
vectorColumn: key,
|
||||
});
|
||||
} else {
|
||||
embeddingFunctions.set(embedFunction, {
|
||||
vectorColumn: key,
|
||||
function: embedFunction,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -12,18 +12,32 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Float, Float32 } from "apache-arrow";
|
||||
import type OpenAI from "openai";
|
||||
import { type EmbeddingFunction } from "./embedding_function";
|
||||
import { EmbeddingFunction } from "./embedding_function";
|
||||
import { register } from "./registry";
|
||||
|
||||
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
private readonly _openai: OpenAI;
|
||||
private readonly _modelName: string;
|
||||
export type OpenAIOptions = {
|
||||
apiKey?: string;
|
||||
model?: string;
|
||||
};
|
||||
|
||||
@register("openai")
|
||||
export class OpenAIEmbeddingFunction extends EmbeddingFunction<
|
||||
string,
|
||||
OpenAIOptions
|
||||
> {
|
||||
#openai: OpenAI;
|
||||
#modelName: string;
|
||||
|
||||
constructor(options: OpenAIOptions = { model: "text-embedding-ada-002" }) {
|
||||
super();
|
||||
const openAIKey = options?.apiKey ?? process.env.OPENAI_API_KEY;
|
||||
if (!openAIKey) {
|
||||
throw new Error("OpenAI API key is required");
|
||||
}
|
||||
const modelName = options?.model ?? "text-embedding-ada-002";
|
||||
|
||||
constructor(
|
||||
sourceColumn: string,
|
||||
openAIKey: string,
|
||||
modelName: string = "text-embedding-ada-002",
|
||||
) {
|
||||
/**
|
||||
* @type {import("openai").default}
|
||||
*/
|
||||
@@ -36,18 +50,40 @@ export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
throw new Error("please install openai@^4.24.1 using npm install openai");
|
||||
}
|
||||
|
||||
this.sourceColumn = sourceColumn;
|
||||
const configuration = {
|
||||
apiKey: openAIKey,
|
||||
};
|
||||
|
||||
this._openai = new Openai(configuration);
|
||||
this._modelName = modelName;
|
||||
this.#openai = new Openai(configuration);
|
||||
this.#modelName = modelName;
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
const response = await this._openai.embeddings.create({
|
||||
model: this._modelName,
|
||||
toJSON() {
|
||||
return {
|
||||
model: this.#modelName,
|
||||
};
|
||||
}
|
||||
|
||||
ndims(): number {
|
||||
switch (this.#modelName) {
|
||||
case "text-embedding-ada-002":
|
||||
return 1536;
|
||||
case "text-embedding-3-large":
|
||||
return 3072;
|
||||
case "text-embedding-3-small":
|
||||
return 1536;
|
||||
default:
|
||||
return null as never;
|
||||
}
|
||||
}
|
||||
|
||||
embeddingDataType(): Float {
|
||||
return new Float32();
|
||||
}
|
||||
|
||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||
const response = await this.#openai.embeddings.create({
|
||||
model: this.#modelName,
|
||||
input: data,
|
||||
});
|
||||
|
||||
@@ -58,5 +94,15 @@ export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
return embeddings;
|
||||
}
|
||||
|
||||
sourceColumn: string;
|
||||
async computeQueryEmbeddings(data: string): Promise<number[]> {
|
||||
if (typeof data !== "string") {
|
||||
throw new Error("Data must be a string");
|
||||
}
|
||||
const response = await this.#openai.embeddings.create({
|
||||
model: this.#modelName,
|
||||
input: data,
|
||||
});
|
||||
|
||||
return response.data[0].embedding;
|
||||
}
|
||||
}
|
||||
|
||||
172
nodejs/lancedb/embedding/registry.ts
Normal file
172
nodejs/lancedb/embedding/registry.ts
Normal file
@@ -0,0 +1,172 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import type { EmbeddingFunction } from "./embedding_function";
|
||||
import "reflect-metadata";
|
||||
|
||||
export interface EmbeddingFunctionOptions {
|
||||
[key: string]: unknown;
|
||||
}
|
||||
|
||||
export interface EmbeddingFunctionFactory<
|
||||
T extends EmbeddingFunction = EmbeddingFunction,
|
||||
> {
|
||||
new (modelOptions?: EmbeddingFunctionOptions): T;
|
||||
}
|
||||
|
||||
interface EmbeddingFunctionCreate<T extends EmbeddingFunction> {
|
||||
create(options?: EmbeddingFunctionOptions): T;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is a singleton class used to register embedding functions
|
||||
* and fetch them by name. It also handles serializing and deserializing.
|
||||
* You can implement your own embedding function by subclassing EmbeddingFunction
|
||||
* or TextEmbeddingFunction and registering it with the registry
|
||||
*/
|
||||
export class EmbeddingFunctionRegistry {
|
||||
#functions: Map<string, EmbeddingFunctionFactory> = new Map();
|
||||
|
||||
/**
|
||||
* Register an embedding function
|
||||
* @param name The name of the function
|
||||
* @param func The function to register
|
||||
*/
|
||||
register<T extends EmbeddingFunctionFactory = EmbeddingFunctionFactory>(
|
||||
this: EmbeddingFunctionRegistry,
|
||||
alias?: string,
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
): (ctor: T) => any {
|
||||
const self = this;
|
||||
return function (ctor: T) {
|
||||
if (!alias) {
|
||||
alias = ctor.name;
|
||||
}
|
||||
if (self.#functions.has(alias)) {
|
||||
throw new Error(
|
||||
`Embedding function with alias "${alias}" already exists`,
|
||||
);
|
||||
}
|
||||
self.#functions.set(alias, ctor);
|
||||
Reflect.defineMetadata("lancedb::embedding::name", alias, ctor);
|
||||
return ctor;
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Fetch an embedding function by name
|
||||
* @param name The name of the function
|
||||
*/
|
||||
get<T extends EmbeddingFunction<unknown> = EmbeddingFunction>(
|
||||
name: string,
|
||||
): EmbeddingFunctionCreate<T> | undefined {
|
||||
const factory = this.#functions.get(name);
|
||||
if (!factory) {
|
||||
return undefined;
|
||||
}
|
||||
return {
|
||||
create: function (options: EmbeddingFunctionOptions) {
|
||||
return new factory(options) as unknown as T;
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* reset the registry to the initial state
|
||||
*/
|
||||
reset(this: EmbeddingFunctionRegistry) {
|
||||
this.#functions.clear();
|
||||
}
|
||||
|
||||
parseFunctions(
|
||||
this: EmbeddingFunctionRegistry,
|
||||
metadata: Map<string, string>,
|
||||
): Map<string, EmbeddingFunctionConfig> {
|
||||
if (!metadata.has("embedding_functions")) {
|
||||
return new Map();
|
||||
} else {
|
||||
type FunctionConfig = {
|
||||
name: string;
|
||||
sourceColumn: string;
|
||||
vectorColumn: string;
|
||||
model: EmbeddingFunctionOptions;
|
||||
};
|
||||
const functions = <FunctionConfig[]>(
|
||||
JSON.parse(metadata.get("embedding_functions")!)
|
||||
);
|
||||
return new Map(
|
||||
functions.map((f) => {
|
||||
const fn = this.get(f.name);
|
||||
if (!fn) {
|
||||
throw new Error(`Function "${f.name}" not found in registry`);
|
||||
}
|
||||
return [
|
||||
f.name,
|
||||
{
|
||||
sourceColumn: f.sourceColumn,
|
||||
vectorColumn: f.vectorColumn,
|
||||
function: this.get(f.name)!.create(f.model),
|
||||
},
|
||||
];
|
||||
}),
|
||||
);
|
||||
}
|
||||
}
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
functionToMetadata(conf: EmbeddingFunctionConfig): Record<string, any> {
|
||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||
const metadata: Record<string, any> = {};
|
||||
const name = Reflect.getMetadata(
|
||||
"lancedb::embedding::name",
|
||||
conf.function.constructor,
|
||||
);
|
||||
metadata["sourceColumn"] = conf.sourceColumn;
|
||||
metadata["vectorColumn"] = conf.vectorColumn ?? "vector";
|
||||
metadata["name"] = name ?? conf.function.constructor.name;
|
||||
metadata["model"] = conf.function.toJSON();
|
||||
return metadata;
|
||||
}
|
||||
|
||||
getTableMetadata(functions: EmbeddingFunctionConfig[]): Map<string, string> {
|
||||
const metadata = new Map<string, string>();
|
||||
const jsonData = functions.map((conf) => this.functionToMetadata(conf));
|
||||
metadata.set("embedding_functions", JSON.stringify(jsonData));
|
||||
|
||||
return metadata;
|
||||
}
|
||||
}
|
||||
|
||||
const _REGISTRY = new EmbeddingFunctionRegistry();
|
||||
|
||||
export function register(name?: string) {
|
||||
return _REGISTRY.register(name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Utility function to get the global instance of the registry
|
||||
* @returns `EmbeddingFunctionRegistry` The global instance of the registry
|
||||
* @example
|
||||
* ```ts
|
||||
* const registry = getRegistry();
|
||||
* const openai = registry.get("openai").create();
|
||||
*/
|
||||
export function getRegistry(): EmbeddingFunctionRegistry {
|
||||
return _REGISTRY;
|
||||
}
|
||||
|
||||
export interface EmbeddingFunctionConfig {
|
||||
sourceColumn: string;
|
||||
vectorColumn?: string;
|
||||
function: EmbeddingFunction;
|
||||
}
|
||||
@@ -170,6 +170,7 @@ export class QueryBase<
|
||||
/** Collect the results as an array of objects. */
|
||||
async toArray(): Promise<unknown[]> {
|
||||
const tbl = await this.toArrow();
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
|
||||
return tbl.toArray();
|
||||
}
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
|
||||
import { Schema, tableFromIPC } from "apache-arrow";
|
||||
import { Data, fromDataToBuffer } from "./arrow";
|
||||
import { getRegistry } from "./embedding/registry";
|
||||
import { IndexOptions } from "./indices";
|
||||
import {
|
||||
AddColumnsSql,
|
||||
@@ -122,8 +123,14 @@ export class Table {
|
||||
*/
|
||||
async add(data: Data, options?: Partial<AddDataOptions>): Promise<void> {
|
||||
const mode = options?.mode ?? "append";
|
||||
const schema = await this.schema();
|
||||
const registry = getRegistry();
|
||||
const functions = registry.parseFunctions(schema.metadata);
|
||||
|
||||
const buffer = await fromDataToBuffer(data);
|
||||
const buffer = await fromDataToBuffer(
|
||||
data,
|
||||
functions.values().next().value,
|
||||
);
|
||||
await this.inner.add(buffer, mode);
|
||||
}
|
||||
|
||||
|
||||
15383
nodejs/package-lock.json
generated
15383
nodejs/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -62,6 +62,7 @@
|
||||
},
|
||||
"dependencies": {
|
||||
"apache-arrow": "^15.0.0",
|
||||
"openai": "^4.29.2"
|
||||
"openai": "^4.29.2",
|
||||
"reflect-metadata": "^0.2.2"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,7 +7,9 @@
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true
|
||||
"resolveJsonModule": true,
|
||||
"emitDecoratorMetadata": true,
|
||||
"experimentalDecorators": true
|
||||
},
|
||||
"exclude": ["./dist/*"],
|
||||
"typedocOptions": {
|
||||
|
||||
Reference in New Issue
Block a user