fix(EmbeddingFunction): modify safe_model_dump to explicitly exclude class fields with underscore (#1688)

Resolve issue #1681

---------

Co-authored-by: rjrobben <rjrobben123@gmail.com>
This commit is contained in:
rjrobben
2024-09-26 02:53:49 +08:00
committed by GitHub
parent 8f0eb34109
commit e606a455df
3 changed files with 89 additions and 2 deletions

View File

@@ -106,8 +106,14 @@ class EmbeddingFunction(BaseModel, ABC):
from ..pydantic import PYDANTIC_VERSION
if PYDANTIC_VERSION.major < 2:
return dict(self)
return self.model_dump()
return {k: v for k, v in self.__dict__.items() if not k.startswith("_")}
return self.model_dump(
exclude={
field_name
for field_name in self.model_fields
if field_name.startswith("_")
}
)
@abstractmethod
def ndims(self):

View File

@@ -183,3 +183,45 @@ def test_add_optional_vector(tmp_path):
expected = LanceSchema(id="id", text="text")
tbl.add([expected])
assert not (np.abs(tbl.to_pandas()["vector"][0]) < 1e-6).all()
@pytest.mark.parametrize(
"embedding_type",
[
"openai",
"sentence-transformers",
"huggingface",
"ollama",
"cohere",
"instructor",
],
)
def test_embedding_function_safe_model_dump(embedding_type):
registry = get_registry()
# Note: Some embedding types might require specific parameters
try:
model = registry.get(embedding_type).create()
except Exception as e:
pytest.skip(f"Skipping {embedding_type} due to error: {str(e)}")
dumped_model = model.safe_model_dump()
assert all(
not k.startswith("_") for k in dumped_model.keys()
), f"{embedding_type}: Dumped model contains keys starting with underscore"
assert (
"max_retries" in dumped_model
), f"{embedding_type}: Essential field 'max_retries' is missing from dumped model"
assert isinstance(
dumped_model, dict
), f"{embedding_type}: Dumped model is not a dictionary"
for key in model.__dict__:
if key.startswith("_"):
assert key not in dumped_model, (
f"{embedding_type}: Private attribute '{key}' "
f"is present in dumped model"
)

View File

@@ -442,3 +442,42 @@ def test_watsonx_embedding(tmp_path):
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
@pytest.mark.slow
@pytest.mark.skipif(
importlib.util.find_spec("ollama") is None, reason="Ollama not installed"
)
def test_ollama_embedding(tmp_path):
model = get_registry().get("ollama").create(max_retries=0)
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect(tmp_path)
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == model.ndims()
result = tbl.search("hello").limit(1).to_pandas()
assert result["text"][0] == "hello world"
# Test safe_model_dump
dumped_model = model.safe_model_dump()
assert isinstance(dumped_model, dict)
assert "name" in dumped_model
assert "max_retries" in dumped_model
assert dumped_model["max_retries"] == 0
assert all(not k.startswith("_") for k in dumped_model.keys())
# Test serialization of the dumped model
import json
try:
json.dumps(dumped_model)
except TypeError:
pytest.fail("Failed to JSON serialize the dumped model")