feat: support mean reciprocal rank reranker (#2671)

The basic idea of MRR is this -
https://www.evidentlyai.com/ranking-metrics/mean-reciprocal-rank-mrr
I've implemented a weighted version for allowing user to set weightage
between vector and fts.

The gist is something like this 

### Scenario A: Document at rank 1 in one set, absent from another

```
# Assuming equal weights: weight_vector = 0.5, weight_fts = 0.5
vector_rr = 1.0  # rank 1 → 1/1 = 1.0
fts_rr = 0.0     # absent → 0.0

weighted_mrr = 0.5 × 1.0 + 0.5 × 0.0 = 0.5
```
### Scenario B: Document at rank 1 in one set, rank 2 in another
```
# Same weights: weight_vector = 0.5, weight_fts = 0.5
vector_rr = 1.0  # rank 1 → 1/1 = 1.0
fts_rr = 0.5     # rank 2 → 1/2 = 0.5

weighted_mrr = 0.5 × 1.0 + 0.5 × 0.5 = 0.5 + 0.25 = 0.75
```

And so with `return_score="all"` the result looks something like this
(this is from the reranker tests).
Because this is a weighted rank based reranker, some results might have
the same score
```
                                                 text                                             vector     _distance      _rowid     _score  _relevance_score
0                                    I am your father  [-0.010703234, 0.069315575, 0.030076642, 0.002...  8.149148e-13  8589934598  10.978719          1.000000
1                          the ground beneath my feet  [-0.09500901, 0.00092102867, 0.0755851, 0.0372...  1.376896e+00  8589934604        NaN          0.250000
2                I find your lack of faith disturbing  [0.07525753, -0.0100010475, 0.09990541, 0.0209...           NaN  8589934595   3.483394          0.250000
3                               but I don't wanna die  [0.033476487, -0.011235877, -0.057625435, -0.0...  1.538222e+00  8589934610   1.130355          0.238095
4   if you strike me down I shall become more powe...  [0.00432201, 0.030120496, 5.3317923e-05, 0.033...  1.381086e+00  8589934594   0.715157          0.216667
5           I see a salty message written in the eves  [-0.04213107, 0.0016004723, 0.061052393, -0.02...  1.638301e+00  8589934603   1.043785          0.133333
6                              but his son was mortal  [0.012462767, 0.049041674, -0.057339743, -0.04...  1.421566e+00  8589934620        NaN          0.125000
7                   I've got a bad feeling about this  [-0.06973199, -0.029960092, 0.02641632, -0.031...           NaN  8589934596   1.043785          0.125000
8    now that's a name I haven't heard in a long time  [-0.014374257, -0.013588792, -0.07487557, 0.03...  1.597573e+00  8589934593   0.848772          0.118056
9                                        he was a god  [-0.0258895, 0.11925236, -0.029397793, 0.05888...  1.423147e+00  8589934618        NaN          0.100000
10                 I wish they would make another one  [-0.14737535, -0.015304729, 0.04318139, -0.061...           NaN  8589934622   1.043785          0.100000
11                                   Kratos had a son  [-0.057455737, 0.13734367, -0.03537109, -0.000...  1.488075e+00  8589934617        NaN          0.083333
12                       I don't wanna live like this  [-0.0028891307, 0.015214227, 0.025183653, 0.08...           NaN  8589934609   1.043785          0.071429
13             I see a mansard roof through the trees  [0.052383978, 0.087759204, 0.014739997, 0.0239...           NaN  8589934602   1.043785          0.062500
14                          great kid don't get cocky  [-0.047043696, 0.054648954, -0.008509666, -0.0...  1.618125e+00  8589934592        NaN          0.055556
```
This commit is contained in:
Ayush Chaurasia
2025-09-23 18:25:18 +05:30
committed by GitHub
parent 05a4ea646a
commit e921c90c1b
3 changed files with 202 additions and 1 deletions

View File

@@ -9,6 +9,7 @@ from .linear_combination import LinearCombinationReranker
from .openai import OpenaiReranker
from .jinaai import JinaReranker
from .rrf import RRFReranker
from .mrr import MRRReranker
from .answerdotai import AnswerdotaiRerankers
from .voyageai import VoyageAIReranker
@@ -23,4 +24,5 @@ __all__ = [
"RRFReranker",
"AnswerdotaiRerankers",
"VoyageAIReranker",
"MRRReranker",
]

View File

@@ -0,0 +1,169 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from typing import Union, List, TYPE_CHECKING
import pyarrow as pa
import numpy as np
from collections import defaultdict
from .base import Reranker
if TYPE_CHECKING:
from ..table import LanceVectorQueryBuilder
class MRRReranker(Reranker):
"""
Reranks the results using Mean Reciprocal Rank (MRR) algorithm based
on the scores of vector and FTS search.
Algorithm reference - https://en.wikipedia.org/wiki/Mean_reciprocal_rank
MRR calculates the average of reciprocal ranks across different search results.
For each document, it computes the reciprocal of its rank in each system,
then takes the mean of these reciprocal ranks as the final score.
Parameters
----------
weight_vector : float, default 0.5
Weight for vector search results (0.0 to 1.0)
weight_fts : float, default 0.5
Weight for FTS search results (0.0 to 1.0)
Note: weight_vector + weight_fts should equal 1.0
return_score : str, default "relevance"
Options are "relevance" or "all"
The type of score to return. If "relevance", will return only the relevance
score. If "all", will return all scores from the vector and FTS search along
with the relevance score.
"""
def __init__(
self,
weight_vector: float = 0.5,
weight_fts: float = 0.5,
return_score="relevance",
):
if not (0.0 <= weight_vector <= 1.0):
raise ValueError("weight_vector must be between 0.0 and 1.0")
if not (0.0 <= weight_fts <= 1.0):
raise ValueError("weight_fts must be between 0.0 and 1.0")
if abs(weight_vector + weight_fts - 1.0) > 1e-6:
raise ValueError("weight_vector + weight_fts must equal 1.0")
super().__init__(return_score)
self.weight_vector = weight_vector
self.weight_fts = weight_fts
def rerank_hybrid(
self,
query: str, # noqa: F821
vector_results: pa.Table,
fts_results: pa.Table,
):
vector_ids = vector_results["_rowid"].to_pylist() if vector_results else []
fts_ids = fts_results["_rowid"].to_pylist() if fts_results else []
# Maps result_id to list of (type, reciprocal_rank)
mrr_score_map = defaultdict(list)
if vector_ids:
for rank, result_id in enumerate(vector_ids, 1):
reciprocal_rank = 1.0 / rank
mrr_score_map[result_id].append(("vector", reciprocal_rank))
if fts_ids:
for rank, result_id in enumerate(fts_ids, 1):
reciprocal_rank = 1.0 / rank
mrr_score_map[result_id].append(("fts", reciprocal_rank))
final_mrr_scores = {}
for result_id, scores in mrr_score_map.items():
vector_rr = 0.0
fts_rr = 0.0
for score_type, reciprocal_rank in scores:
if score_type == "vector":
vector_rr = reciprocal_rank
elif score_type == "fts":
fts_rr = reciprocal_rank
# If a document doesn't appear, its reciprocal rank is 0
weighted_mrr = self.weight_vector * vector_rr + self.weight_fts * fts_rr
final_mrr_scores[result_id] = weighted_mrr
combined_results = self.merge_results(vector_results, fts_results)
combined_row_ids = combined_results["_rowid"].to_pylist()
relevance_scores = [final_mrr_scores[row_id] for row_id in combined_row_ids]
combined_results = combined_results.append_column(
"_relevance_score", pa.array(relevance_scores, type=pa.float32())
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)
if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results)
return combined_results
def rerank_multivector(
self,
vector_results: Union[List[pa.Table], List["LanceVectorQueryBuilder"]],
query: str = None,
deduplicate: bool = True, # noqa: F821
):
"""
Reranks the results from multiple vector searches using MRR algorithm.
Each vector search result is treated as a separate ranking system,
and MRR calculates the mean of reciprocal ranks across all systems.
This cannot reuse rerank_hybrid because MRR semantics require treating
each vector result as a separate ranking system.
"""
if not all(isinstance(v, type(vector_results[0])) for v in vector_results):
raise ValueError(
"All elements in vector_results should be of the same type"
)
# avoid circular import
if type(vector_results[0]).__name__ == "LanceVectorQueryBuilder":
vector_results = [result.to_arrow() for result in vector_results]
elif not isinstance(vector_results[0], pa.Table):
raise ValueError(
"vector_results should be a list of pa.Table or LanceVectorQueryBuilder"
)
if not all("_rowid" in result.column_names for result in vector_results):
raise ValueError(
"'_rowid' is required for deduplication. \
add _rowid to search results like this: \
`search().with_row_id(True)`"
)
mrr_score_map = defaultdict(list)
for result_table in vector_results:
result_ids = result_table["_rowid"].to_pylist()
for rank, result_id in enumerate(result_ids, 1):
reciprocal_rank = 1.0 / rank
mrr_score_map[result_id].append(reciprocal_rank)
final_mrr_scores = {}
for result_id, reciprocal_ranks in mrr_score_map.items():
mean_rr = np.mean(reciprocal_ranks)
final_mrr_scores[result_id] = mean_rr
combined = pa.concat_tables(vector_results, **self._concat_tables_args)
combined = self._deduplicate(combined)
combined_row_ids = combined["_rowid"].to_pylist()
relevance_scores = [final_mrr_scores[row_id] for row_id in combined_row_ids]
combined = combined.append_column(
"_relevance_score", pa.array(relevance_scores, type=pa.float32())
)
combined = combined.sort_by([("_relevance_score", "descending")])
if self.score == "relevance":
combined = self._keep_relevance_score(combined)
return combined

View File

@@ -22,6 +22,7 @@ from lancedb.rerankers import (
JinaReranker,
AnswerdotaiRerankers,
VoyageAIReranker,
MRRReranker,
)
from lancedb.table import LanceTable
@@ -46,6 +47,7 @@ def get_test_table(tmp_path, use_tantivy):
db,
"my_table",
schema=MyTable,
mode="overwrite",
)
# Need to test with a bunch of phrases to make sure sorting is consistent
@@ -96,7 +98,7 @@ def get_test_table(tmp_path, use_tantivy):
)
# Create a fts index
table.create_fts_index("text", use_tantivy=use_tantivy)
table.create_fts_index("text", use_tantivy=use_tantivy, replace=True)
return table, MyTable
@@ -320,6 +322,34 @@ def test_rrf_reranker(tmp_path, use_tantivy):
_run_test_hybrid_reranker(reranker, tmp_path, use_tantivy)
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_mrr_reranker(tmp_path, use_tantivy):
reranker = MRRReranker()
_run_test_hybrid_reranker(reranker, tmp_path, use_tantivy)
# Test multi-vector part
table, schema = get_test_table(tmp_path, use_tantivy)
query = "single player experience"
rs1 = table.search(query, vector_column_name="vector").limit(10).with_row_id(True)
rs2 = (
table.search(query, vector_column_name="meta_vector")
.limit(10)
.with_row_id(True)
)
result = reranker.rerank_multivector([rs1, rs2])
assert "_relevance_score" in result.column_names
assert len(result) <= 20
if len(result) > 1:
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), (
"The _relevance_score should be descending."
)
# Test with duplicate results
result_deduped = reranker.rerank_multivector([rs1, rs2, rs1])
assert len(result_deduped) == len(result)
def test_rrf_reranker_distance():
data = pa.table(
{