mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-26 14:49:57 +00:00
chore: choose appropriate args for concat_table based on pyarrow version & refactor reranker tests (#1455)
This commit is contained in:
@@ -35,7 +35,7 @@ class MockTextEmbeddingFunction(TextEmbeddingFunction):
|
||||
def _compute_one_embedding(self, row):
|
||||
emb = np.array([float(hash(c)) for c in row[:10]])
|
||||
emb /= np.linalg.norm(emb)
|
||||
return emb
|
||||
return emb if len(emb) == 10 else [0] * 10
|
||||
|
||||
def ndims(self):
|
||||
return 10
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from packaging.version import Version
|
||||
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
|
||||
ARROW_VERSION = Version(pa.__version__)
|
||||
|
||||
|
||||
class Reranker(ABC):
|
||||
def __init__(self, return_score: str = "relevance"):
|
||||
@@ -23,6 +26,11 @@ class Reranker(ABC):
|
||||
if return_score not in ["relevance", "all"]:
|
||||
raise ValueError("score must be either 'relevance' or 'all'")
|
||||
self.score = return_score
|
||||
# Set the merge args based on the arrow version here to avoid checking it at
|
||||
# each query
|
||||
self._concat_tables_args = {"promote_options": "default"}
|
||||
if ARROW_VERSION.major <= 13:
|
||||
self._concat_tables_args = {"promote": True}
|
||||
|
||||
def rerank_vector(
|
||||
self,
|
||||
@@ -119,7 +127,9 @@ class Reranker(ABC):
|
||||
fts_results : pa.Table
|
||||
The results from the FTS search
|
||||
"""
|
||||
combined = pa.concat_tables([vector_results, fts_results], promote=True)
|
||||
combined = pa.concat_tables(
|
||||
[vector_results, fts_results], **self._concat_tables_args
|
||||
)
|
||||
row_id = combined.column("_rowid")
|
||||
|
||||
# deduplicate
|
||||
|
||||
@@ -11,6 +11,7 @@ from lancedb.rerankers import (
|
||||
ColbertReranker,
|
||||
CrossEncoderReranker,
|
||||
OpenaiReranker,
|
||||
JinaReranker,
|
||||
)
|
||||
from lancedb.table import LanceTable
|
||||
|
||||
@@ -82,6 +83,63 @@ def get_test_table(tmp_path):
|
||||
return table, MyTable
|
||||
|
||||
|
||||
def _run_test_reranker(reranker, table, query, query_vector, schema):
|
||||
# Hybrid search setting
|
||||
result1 = (
|
||||
table.search(query, query_type="hybrid")
|
||||
.rerank(normalize="score", reranker=reranker)
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
result2 = (
|
||||
table.search(query, query_type="hybrid")
|
||||
.rerank(reranker=reranker)
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
assert result1 == result2
|
||||
|
||||
query_vector = table.to_pandas()["vector"][0]
|
||||
result = (
|
||||
table.search((query_vector, query))
|
||||
.limit(30)
|
||||
.rerank(reranker=reranker)
|
||||
.to_arrow()
|
||||
)
|
||||
|
||||
assert len(result) == 30
|
||||
err = (
|
||||
"The _relevance_score column of the results returned by the reranker "
|
||||
"represents the relevance of the result to the query & should "
|
||||
"be descending."
|
||||
)
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
|
||||
# Vector search setting
|
||||
result = table.search(query).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
assert len(result) == 30
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
result_explicit = (
|
||||
table.search(query_vector)
|
||||
.rerank(reranker=reranker, query_string=query)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result_explicit) == 30
|
||||
with pytest.raises(
|
||||
ValueError
|
||||
): # This raises an error because vector query is provided without reanking query
|
||||
table.search(query_vector).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
|
||||
# FTS search setting
|
||||
result = (
|
||||
table.search(query, query_type="fts")
|
||||
.rerank(reranker=reranker)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result) > 0
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
|
||||
|
||||
def test_linear_combination(tmp_path):
|
||||
table, schema = get_test_table(tmp_path)
|
||||
# The default reranker
|
||||
@@ -126,185 +184,21 @@ def test_cohere_reranker(tmp_path):
|
||||
pytest.importorskip("cohere")
|
||||
reranker = CohereReranker()
|
||||
table, schema = get_test_table(tmp_path)
|
||||
# Hybrid search setting
|
||||
result1 = (
|
||||
table.search("Our father who art in heaven", query_type="hybrid")
|
||||
.rerank(normalize="score", reranker=CohereReranker())
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
result2 = (
|
||||
table.search("Our father who art in heaven", query_type="hybrid")
|
||||
.rerank(reranker=reranker)
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
assert result1 == result2
|
||||
|
||||
query = "Our father who art in heaven"
|
||||
query_vector = table.to_pandas()["vector"][0]
|
||||
result = (
|
||||
table.search((query_vector, query))
|
||||
.limit(30)
|
||||
.rerank(reranker=reranker)
|
||||
.to_arrow()
|
||||
)
|
||||
|
||||
assert len(result) == 30
|
||||
err = (
|
||||
"The _relevance_score column of the results returned by the reranker "
|
||||
"represents the relevance of the result to the query & should "
|
||||
"be descending."
|
||||
)
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
|
||||
# Vector search setting
|
||||
query = "Our father who art in heaven"
|
||||
result = table.search(query).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
assert len(result) == 30
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
result_explicit = (
|
||||
table.search(query_vector)
|
||||
.rerank(reranker=reranker, query_string=query)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result_explicit) == 30
|
||||
with pytest.raises(
|
||||
ValueError
|
||||
): # This raises an error because vector query is provided without reanking query
|
||||
table.search(query_vector).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
|
||||
# FTS search setting
|
||||
result = (
|
||||
table.search(query, query_type="fts")
|
||||
.rerank(reranker=reranker)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result) > 0
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
_run_test_reranker(reranker, table, "single player experience", None, schema)
|
||||
|
||||
|
||||
def test_cross_encoder_reranker(tmp_path):
|
||||
pytest.importorskip("sentence_transformers")
|
||||
reranker = CrossEncoderReranker()
|
||||
table, schema = get_test_table(tmp_path)
|
||||
result1 = (
|
||||
table.search("Our father who art in heaven", query_type="hybrid")
|
||||
.rerank(normalize="score", reranker=reranker)
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
result2 = (
|
||||
table.search("Our father who art in heaven", query_type="hybrid")
|
||||
.rerank(reranker=reranker)
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
assert result1 == result2
|
||||
|
||||
query = "Our father who art in heaven"
|
||||
query_vector = table.to_pandas()["vector"][0]
|
||||
result = (
|
||||
table.search((query_vector, query), query_type="hybrid")
|
||||
.limit(30)
|
||||
.rerank(reranker=reranker)
|
||||
.to_arrow()
|
||||
)
|
||||
|
||||
assert len(result) == 30
|
||||
|
||||
err = (
|
||||
"The _relevance_score column of the results returned by the reranker "
|
||||
"represents the relevance of the result to the query & should "
|
||||
"be descending."
|
||||
)
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
|
||||
# Vector search setting
|
||||
result = table.search(query).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
assert len(result) == 30
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
|
||||
result_explicit = (
|
||||
table.search(query_vector)
|
||||
.rerank(reranker=reranker, query_string=query)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result_explicit) == 30
|
||||
with pytest.raises(
|
||||
ValueError
|
||||
): # This raises an error because vector query is provided without reanking query
|
||||
table.search(query_vector).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
|
||||
# FTS search setting
|
||||
result = (
|
||||
table.search(query, query_type="fts")
|
||||
.rerank(reranker=reranker)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result) > 0
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
_run_test_reranker(reranker, table, "single player experience", None, schema)
|
||||
|
||||
|
||||
def test_colbert_reranker(tmp_path):
|
||||
pytest.importorskip("transformers")
|
||||
reranker = ColbertReranker()
|
||||
table, schema = get_test_table(tmp_path)
|
||||
result1 = (
|
||||
table.search("Our father who art in heaven", query_type="hybrid")
|
||||
.rerank(normalize="score", reranker=reranker)
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
result2 = (
|
||||
table.search("Our father who art in heaven", query_type="hybrid")
|
||||
.rerank(reranker=reranker)
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
assert result1 == result2
|
||||
|
||||
# test explicit hybrid query
|
||||
query = "Our father who art in heaven"
|
||||
query_vector = table.to_pandas()["vector"][0]
|
||||
result = (
|
||||
table.search((query_vector, query))
|
||||
.limit(30)
|
||||
.rerank(reranker=reranker)
|
||||
.to_arrow()
|
||||
)
|
||||
|
||||
assert len(result) == 30
|
||||
err = (
|
||||
"The _relevance_score column of the results returned by the reranker "
|
||||
"represents the relevance of the result to the query & should "
|
||||
"be descending."
|
||||
)
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
|
||||
# Vector search setting
|
||||
result = table.search(query).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
assert len(result) == 30
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
result_explicit = (
|
||||
table.search(query_vector)
|
||||
.rerank(reranker=reranker, query_string=query)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result_explicit) == 30
|
||||
with pytest.raises(
|
||||
ValueError
|
||||
): # This raises an error because vector query is provided without reanking query
|
||||
table.search(query_vector).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
|
||||
# FTS search setting
|
||||
result = (
|
||||
table.search(query, query_type="fts")
|
||||
.rerank(reranker=reranker)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result) > 0
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
_run_test_reranker(reranker, table, "single player experience", None, schema)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
@@ -314,58 +208,14 @@ def test_openai_reranker(tmp_path):
|
||||
pytest.importorskip("openai")
|
||||
table, schema = get_test_table(tmp_path)
|
||||
reranker = OpenaiReranker()
|
||||
result1 = (
|
||||
table.search("Our father who art in heaven", query_type="hybrid")
|
||||
.rerank(normalize="score", reranker=reranker)
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
result2 = (
|
||||
table.search("Our father who art in heaven", query_type="hybrid")
|
||||
.rerank(reranker=OpenaiReranker())
|
||||
.to_pydantic(schema)
|
||||
)
|
||||
assert result1 == result2
|
||||
_run_test_reranker(reranker, table, "single player experience", None, schema)
|
||||
|
||||
# test explicit hybrid query
|
||||
query = "Our father who art in heaven"
|
||||
query_vector = table.to_pandas()["vector"][0]
|
||||
result = (
|
||||
table.search((query_vector, query))
|
||||
.limit(30)
|
||||
.rerank(reranker=reranker)
|
||||
.to_arrow()
|
||||
)
|
||||
|
||||
assert len(result) == 30
|
||||
|
||||
err = (
|
||||
"The _relevance_score column of the results returned by the reranker "
|
||||
"represents the relevance of the result to the query & should "
|
||||
"be descending."
|
||||
)
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
|
||||
# Vector search setting
|
||||
result = table.search(query).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
assert len(result) == 30
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
result_explicit = (
|
||||
table.search(query_vector)
|
||||
.rerank(reranker=reranker, query_string=query)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result_explicit) == 30
|
||||
with pytest.raises(
|
||||
ValueError
|
||||
): # This raises an error because vector query is provided without reanking query
|
||||
table.search(query_vector).rerank(reranker=reranker).limit(30).to_arrow()
|
||||
# FTS search setting
|
||||
result = (
|
||||
table.search(query, query_type="fts")
|
||||
.rerank(reranker=reranker)
|
||||
.limit(30)
|
||||
.to_arrow()
|
||||
)
|
||||
assert len(result) > 0
|
||||
assert np.all(np.diff(result.column("_relevance_score").to_numpy()) <= 0), err
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("JINA_API_KEY") is None, reason="JINA_API_KEY not set"
|
||||
)
|
||||
def test_jina_reranker(tmp_path):
|
||||
pytest.importorskip("jina")
|
||||
table, schema = get_test_table(tmp_path)
|
||||
reranker = JinaReranker()
|
||||
_run_test_reranker(reranker, table, "single player experience", None, schema)
|
||||
|
||||
Reference in New Issue
Block a user