feat: add support for returning all scores with rerankers (#2509)

Previously `return_score="all"` was supported only for the default
reranker (RRF) and not the model based rerankers.
This adds support for keeping all scores in the base reranker so that
all model based rerankers can use it. Its a slower path than keeping
just the relevance score but can be useful in debugging
This commit is contained in:
Ayush Chaurasia
2025-07-15 21:03:03 +05:30
committed by GitHub
parent 902fb83d54
commit f076bb41f4
9 changed files with 80 additions and 28 deletions

View File

@@ -1374,6 +1374,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
if query_string is not None and not isinstance(query_string, str):
raise ValueError("Reranking currently only supports string queries")
self._str_query = query_string if query_string is not None else self._str_query
if reranker.score == "all":
self.with_row_id(True)
return self
def bypass_vector_index(self) -> LanceVectorQueryBuilder:
@@ -1569,6 +1571,8 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
The LanceQueryBuilder object.
"""
self._reranker = reranker
if reranker.score == "all":
self.with_row_id(True)
return self
@@ -1845,6 +1849,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._norm = normalize
self._reranker = reranker
if reranker.score == "all":
self.with_row_id(True)
return self

View File

@@ -74,9 +74,7 @@ class AnswerdotaiRerankers(Reranker):
if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"Answerdotai Reranker does not support score='all' yet"
)
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)

View File

@@ -232,6 +232,39 @@ class Reranker(ABC):
return deduped_table
def _merge_and_keep_scores(self, vector_results: pa.Table, fts_results: pa.Table):
"""
Merge the results from the vector and FTS search and keep the scores.
This op is slower than just keeping relevance score but can be useful
for debugging.
"""
# add nulls to fts results for _distance
if "_distance" not in fts_results.column_names:
fts_results = fts_results.append_column(
"_distance",
pa.array([None] * len(fts_results), type=pa.float32()),
)
# add nulls to vector results for _score
if "_score" not in vector_results.column_names:
vector_results = vector_results.append_column(
"_score",
pa.array([None] * len(vector_results), type=pa.float32()),
)
# combine them and fill the scores
vector_results_dict = {row["_rowid"]: row for row in vector_results.to_pylist()}
fts_results_dict = {row["_rowid"]: row for row in fts_results.to_pylist()}
# merge them into vector_results
for key, value in fts_results_dict.items():
if key in vector_results_dict:
vector_results_dict[key]["_score"] = value["_score"]
else:
vector_results_dict[key] = value
combined = pa.Table.from_pylist(list(vector_results_dict.values()))
return combined
def _keep_relevance_score(self, combined_results: pa.Table):
if self.score == "relevance":
if "_score" in combined_results.column_names:

View File

@@ -92,14 +92,14 @@ class CohereReranker(Reranker):
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for cohere reranker"
)
return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table):

View File

@@ -81,15 +81,15 @@ class CrossEncoderReranker(Reranker):
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
# sort the results by _score
if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for CrossEncoderReranker"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]
)

View File

@@ -97,14 +97,14 @@ class JinaReranker(Reranker):
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for JinaReranker"
)
return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table):

View File

@@ -88,14 +88,13 @@ class OpenaiReranker(Reranker):
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"OpenAI Reranker does not support score='all' yet"
)
combined_results = combined_results.sort_by(
[("_relevance_score", "descending")]

View File

@@ -94,14 +94,14 @@ class VoyageAIReranker(Reranker):
vector_results: pa.Table,
fts_results: pa.Table,
):
combined_results = self.merge_results(vector_results, fts_results)
if self.score == "all":
combined_results = self._merge_and_keep_scores(vector_results, fts_results)
else:
combined_results = self.merge_results(vector_results, fts_results)
combined_results = self._rerank(combined_results, query)
if self.score == "relevance":
combined_results = self._keep_relevance_score(combined_results)
elif self.score == "all":
raise NotImplementedError(
"return_score='all' not implemented for voyageai reranker"
)
return combined_results
def rerank_vector(self, query: str, vector_results: pa.Table):

View File

@@ -499,3 +499,19 @@ def test_empty_result_reranker():
.rerank(reranker)
.to_arrow()
)
@pytest.mark.parametrize("use_tantivy", [True, False])
def test_cross_encoder_reranker_return_all(tmp_path, use_tantivy):
pytest.importorskip("sentence_transformers")
reranker = CrossEncoderReranker(return_score="all")
table, schema = get_test_table(tmp_path, use_tantivy)
query = "single player experience"
result = (
table.search(query, query_type="hybrid", vector_column_name="vector")
.rerank(reranker=reranker)
.to_arrow()
)
assert "_relevance_score" in result.column_names
assert "_score" in result.column_names
assert "_distance" in result.column_names