diff --git a/docs/src/embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md b/docs/src/embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
index 41a6be31..beb0b7f7 100644
--- a/docs/src/embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
+++ b/docs/src/embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
@@ -20,7 +20,7 @@ Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
-| `name` | `str` | `"voyage-3"` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
+| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
diff --git a/docs/src/embeddings/default_embedding_functions.md b/docs/src/embeddings/default_embedding_functions.md
index 5457dc9f..5d99ec7e 100644
--- a/docs/src/embeddings/default_embedding_functions.md
+++ b/docs/src/embeddings/default_embedding_functions.md
@@ -53,6 +53,7 @@ These functions are registered by default to handle text embeddings.
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [
](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [
](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [
](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
+| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [
](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
@@ -66,6 +67,7 @@ These functions are registered by default to handle text embeddings.
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
+[voyageai-key]: "voyageai"
## Multi-modal Embedding Functions🖼️
diff --git a/docs/src/reranking/index.md b/docs/src/reranking/index.md
index 746c5d4e..2e880913 100644
--- a/docs/src/reranking/index.md
+++ b/docs/src/reranking/index.md
@@ -9,6 +9,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
+| `VoyageAIReranker` | Uses voyageai Reranker API to rerank results | Vector, FTS, Hybrid |
## Using a Reranker
@@ -73,6 +74,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
- [Jina Reranker](./jina.md)
- [AnswerDotAI Rerankers](./answerdotai.md)
- [Reciprocal Rank Fusion Reranker](./rrf.md)
+- [VoyageAI Reranker](./voyageai.md)
## Creating Custom Rerankers