Basic full text search capabilities (#62)

This is v1 of integrating full text search index into LanceDB.

# API
The query API is roughly the same as before, except if the input is text
instead of a vector we assume that its fts search.

## Example
If `table` is a LanceDB LanceTable, then:

Build index: `table.create_fts_index("text")`

Query: `df = table.search("puppy").limit(10).select(["text"]).to_df()`

# Implementation
Here we use the tantivy-py package to build the index. We then use the
row id's as the full-text-search index's doc id then we just do a Take
operation to fetch the rows.

# Limitations

1. don't support incremental row appends yet. New data won't show up in
search
2. local filesystem only 
3. requires building tantivy explicitly

---------

Co-authored-by: Chang She <chang@lancedb.com>
This commit is contained in:
Chang She
2023-05-24 22:25:31 -06:00
committed by GitHub
parent f923cfe47f
commit f485378ea4
9 changed files with 319 additions and 6 deletions

122
python/lancedb/fts.py Normal file
View File

@@ -0,0 +1,122 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Full text search index using tantivy-py"""
import os
from typing import List, Tuple
import pyarrow as pa
import tantivy
from .table import LanceTable
def create_index(index_path: str, text_fields: List[str]) -> tantivy.Index:
"""
Create a new Index (not populated)
Parameters
----------
index_path : str
Path to the index directory
text_fields : List[str]
List of text fields to index
Returns
-------
index : tantivy.Index
The index object (not yet populated)
"""
# Declaring our schema.
schema_builder = tantivy.SchemaBuilder()
# special field that we'll populate with row_id
schema_builder.add_integer_field("doc_id", stored=True)
# data fields
for name in text_fields:
schema_builder.add_text_field(name, stored=True)
schema = schema_builder.build()
os.makedirs(index_path, exist_ok=True)
index = tantivy.Index(schema, path=index_path)
return index
def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -> int:
"""
Populate an index with data from a LanceTable
Parameters
----------
index : tantivy.Index
The index object
table : LanceTable
The table to index
fields : List[str]
List of fields to index
"""
# first check the fields exist and are string or large string type
for name in fields:
f = table.schema.field(name) # raises KeyError if not found
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
raise TypeError(f"Field {name} is not a string type")
# create a tantivy writer
writer = index.writer()
# write data into index
dataset = table.to_lance()
row_id = 0
for b in dataset.to_batches(columns=fields):
for i in range(b.num_rows):
doc = tantivy.Document()
doc.add_integer("doc_id", row_id)
for name in fields:
doc.add_text(name, b[name][i].as_py())
writer.add_document(doc)
row_id += 1
# commit changes
writer.commit()
return row_id
def search_index(
index: tantivy.Index, query: str, limit: int = 10
) -> Tuple[Tuple[int], Tuple[float]]:
"""
Search an index for a query
Parameters
----------
index : tantivy.Index
The index object
query : str
The query string
limit : int
The maximum number of results to return
Returns
-------
ids_and_score: list[tuple[int], tuple[float]]
A tuple of two tuples, the first containing the document ids
and the second containing the scores
"""
searcher = index.searcher()
query = index.parse_query(query)
# get top results
results = searcher.search(query, limit)
return tuple(
zip(
*[
(searcher.doc(doc_address)["doc_id"][0], score)
for score, doc_address in results.hits
]
)
)

View File

@@ -14,6 +14,7 @@ from __future__ import annotations
import numpy as np
import pandas as pd
import pyarrow as pa
from .common import VECTOR_COLUMN_NAME
@@ -131,7 +132,6 @@ class LanceQueryBuilder:
vector and the returned vector.
"""
ds = self._table.to_lance()
# TODO indexed search
tbl = ds.to_table(
columns=self._columns,
filter=self._where,
@@ -145,3 +145,26 @@ class LanceQueryBuilder:
},
)
return tbl.to_pandas()
class LanceFtsQueryBuilder(LanceQueryBuilder):
def to_df(self) -> pd.DataFrame:
try:
import tantivy
except ImportError:
raise ImportError(
"You need to install the `lancedb[fts]` extra to use this method."
)
from .fts import search_index
# get the index path
index_path = self._table._get_fts_index_path()
# open the index
index = tantivy.Index.open(index_path)
# get the scores and doc ids
row_ids, scores = search_index(index, self._query, self._limit)
scores = pa.array(scores)
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
output_tbl = output_tbl.append_column("score", scores)
return output_tbl.to_pandas()

View File

@@ -14,7 +14,9 @@
from __future__ import annotations
import os
import shutil
from functools import cached_property
from typing import List, Union
import lance
import numpy as np
@@ -24,7 +26,8 @@ from lance import LanceDataset
from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .query import LanceQueryBuilder
from .query import LanceFtsQueryBuilder, LanceQueryBuilder
from .util import get_uri_scheme
def _sanitize_data(data, schema):
@@ -130,6 +133,27 @@ class LanceTable:
)
self._reset_dataset()
def create_fts_index(self, field_names: Union[str, List[str]]):
"""Create a full-text search index on the table.
Warning - this API is highly experimental and is highly likely to change
in the future.
Parameters
----------
field_names: str or list of str
The name(s) of the field to index.
"""
from .fts import create_index, populate_index
if isinstance(field_names, str):
field_names = [field_names]
index = create_index(self._get_fts_index_path(), field_names)
populate_index(index, self, field_names)
def _get_fts_index_path(self):
return os.path.join(self._dataset_uri, "_indices", "tantivy")
@cached_property
def _dataset(self) -> LanceDataset:
return lance.dataset(self._dataset_uri, version=self._version)
@@ -158,7 +182,7 @@ class LanceTable:
self._reset_dataset()
return len(self)
def search(self, query: VEC) -> LanceQueryBuilder:
def search(self, query: Union[VEC, str]) -> LanceQueryBuilder:
"""Create a search query to find the nearest neighbors
of the given query vector.
@@ -174,6 +198,10 @@ class LanceTable:
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
if isinstance(query, str):
# fts
return LanceFtsQueryBuilder(self, query)
if isinstance(query, list):
query = np.array(query)
if isinstance(query, np.ndarray):

View File

@@ -45,6 +45,10 @@ dev = [
docs = [
"mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"
]
fts = [
# tantivy 0.19.2
"tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985"
]
[build-system]
requires = [

84
python/tests/test_fts.py Normal file
View File

@@ -0,0 +1,84 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import numpy as np
import pandas as pd
import pytest
import tantivy
import lancedb as ldb
import lancedb.fts
@pytest.fixture
def table(tmp_path) -> ldb.table.LanceTable:
db = ldb.connect(tmp_path)
vectors = [np.random.randn(128) for _ in range(100)]
nouns = ("puppy", "car", "rabbit", "girl", "monkey")
verbs = ("runs", "hits", "jumps", "drives", "barfs")
adv = ("crazily.", "dutifully.", "foolishly.", "merrily.", "occasionally.")
adj = ("adorable", "clueless", "dirty", "odd", "stupid")
text = [
" ".join(
[
nouns[random.randrange(0, 5)],
verbs[random.randrange(0, 5)],
adv[random.randrange(0, 5)],
adj[random.randrange(0, 5)],
]
)
for _ in range(100)
]
table = db.create_table(
"test", data=pd.DataFrame({"vector": vectors, "text": text, "text2": text})
)
return table
def test_create_index(tmp_path):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert isinstance(index, tantivy.Index)
assert os.path.exists(str(tmp_path / "index"))
def test_populate_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert ldb.fts.populate_index(index, table, ["text"]) == len(table)
def test_search_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
ldb.fts.populate_index(index, table, ["text"])
index.reload()
results = ldb.fts.search_index(index, query="puppy", limit=10)
assert len(results) == 2
assert len(results[0]) == 10 # row_ids
assert len(results[1]) == 10 # scores
def test_create_index_from_table(tmp_path, table):
table.create_fts_index("text")
df = table.search("puppy").limit(10).select(["text"]).to_df()
assert len(df) == 10
assert "text" in df.columns
def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"])
df = table.search("puppy").limit(10).to_df()
assert len(df) == 10
assert "text" in df.columns
assert "text2" in df.columns