mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-10 13:52:58 +00:00
Basic full text search capabilities (#62)
This is v1 of integrating full text search index into LanceDB.
# API
The query API is roughly the same as before, except if the input is text
instead of a vector we assume that its fts search.
## Example
If `table` is a LanceDB LanceTable, then:
Build index: `table.create_fts_index("text")`
Query: `df = table.search("puppy").limit(10).select(["text"]).to_df()`
# Implementation
Here we use the tantivy-py package to build the index. We then use the
row id's as the full-text-search index's doc id then we just do a Take
operation to fetch the rows.
# Limitations
1. don't support incremental row appends yet. New data won't show up in
search
2. local filesystem only
3. requires building tantivy explicitly
---------
Co-authored-by: Chang She <chang@lancedb.com>
This commit is contained in:
122
python/lancedb/fts.py
Normal file
122
python/lancedb/fts.py
Normal file
@@ -0,0 +1,122 @@
|
||||
# Copyright 2023 LanceDB Developers
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Full text search index using tantivy-py"""
|
||||
import os
|
||||
from typing import List, Tuple
|
||||
|
||||
import pyarrow as pa
|
||||
import tantivy
|
||||
|
||||
from .table import LanceTable
|
||||
|
||||
|
||||
def create_index(index_path: str, text_fields: List[str]) -> tantivy.Index:
|
||||
"""
|
||||
Create a new Index (not populated)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
index_path : str
|
||||
Path to the index directory
|
||||
text_fields : List[str]
|
||||
List of text fields to index
|
||||
|
||||
Returns
|
||||
-------
|
||||
index : tantivy.Index
|
||||
The index object (not yet populated)
|
||||
"""
|
||||
# Declaring our schema.
|
||||
schema_builder = tantivy.SchemaBuilder()
|
||||
# special field that we'll populate with row_id
|
||||
schema_builder.add_integer_field("doc_id", stored=True)
|
||||
# data fields
|
||||
for name in text_fields:
|
||||
schema_builder.add_text_field(name, stored=True)
|
||||
schema = schema_builder.build()
|
||||
os.makedirs(index_path, exist_ok=True)
|
||||
index = tantivy.Index(schema, path=index_path)
|
||||
return index
|
||||
|
||||
|
||||
def populate_index(index: tantivy.Index, table: LanceTable, fields: List[str]) -> int:
|
||||
"""
|
||||
Populate an index with data from a LanceTable
|
||||
|
||||
Parameters
|
||||
----------
|
||||
index : tantivy.Index
|
||||
The index object
|
||||
table : LanceTable
|
||||
The table to index
|
||||
fields : List[str]
|
||||
List of fields to index
|
||||
"""
|
||||
# first check the fields exist and are string or large string type
|
||||
for name in fields:
|
||||
f = table.schema.field(name) # raises KeyError if not found
|
||||
if not pa.types.is_string(f.type) and not pa.types.is_large_string(f.type):
|
||||
raise TypeError(f"Field {name} is not a string type")
|
||||
|
||||
# create a tantivy writer
|
||||
writer = index.writer()
|
||||
# write data into index
|
||||
dataset = table.to_lance()
|
||||
row_id = 0
|
||||
for b in dataset.to_batches(columns=fields):
|
||||
for i in range(b.num_rows):
|
||||
doc = tantivy.Document()
|
||||
doc.add_integer("doc_id", row_id)
|
||||
for name in fields:
|
||||
doc.add_text(name, b[name][i].as_py())
|
||||
writer.add_document(doc)
|
||||
row_id += 1
|
||||
# commit changes
|
||||
writer.commit()
|
||||
return row_id
|
||||
|
||||
|
||||
def search_index(
|
||||
index: tantivy.Index, query: str, limit: int = 10
|
||||
) -> Tuple[Tuple[int], Tuple[float]]:
|
||||
"""
|
||||
Search an index for a query
|
||||
|
||||
Parameters
|
||||
----------
|
||||
index : tantivy.Index
|
||||
The index object
|
||||
query : str
|
||||
The query string
|
||||
limit : int
|
||||
The maximum number of results to return
|
||||
|
||||
Returns
|
||||
-------
|
||||
ids_and_score: list[tuple[int], tuple[float]]
|
||||
A tuple of two tuples, the first containing the document ids
|
||||
and the second containing the scores
|
||||
"""
|
||||
searcher = index.searcher()
|
||||
query = index.parse_query(query)
|
||||
# get top results
|
||||
results = searcher.search(query, limit)
|
||||
return tuple(
|
||||
zip(
|
||||
*[
|
||||
(searcher.doc(doc_address)["doc_id"][0], score)
|
||||
for score, doc_address in results.hits
|
||||
]
|
||||
)
|
||||
)
|
||||
@@ -14,6 +14,7 @@ from __future__ import annotations
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
|
||||
from .common import VECTOR_COLUMN_NAME
|
||||
|
||||
@@ -131,7 +132,6 @@ class LanceQueryBuilder:
|
||||
vector and the returned vector.
|
||||
"""
|
||||
ds = self._table.to_lance()
|
||||
# TODO indexed search
|
||||
tbl = ds.to_table(
|
||||
columns=self._columns,
|
||||
filter=self._where,
|
||||
@@ -145,3 +145,26 @@ class LanceQueryBuilder:
|
||||
},
|
||||
)
|
||||
return tbl.to_pandas()
|
||||
|
||||
|
||||
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
def to_df(self) -> pd.DataFrame:
|
||||
try:
|
||||
import tantivy
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"You need to install the `lancedb[fts]` extra to use this method."
|
||||
)
|
||||
|
||||
from .fts import search_index
|
||||
|
||||
# get the index path
|
||||
index_path = self._table._get_fts_index_path()
|
||||
# open the index
|
||||
index = tantivy.Index.open(index_path)
|
||||
# get the scores and doc ids
|
||||
row_ids, scores = search_index(index, self._query, self._limit)
|
||||
scores = pa.array(scores)
|
||||
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
||||
output_tbl = output_tbl.append_column("score", scores)
|
||||
return output_tbl.to_pandas()
|
||||
|
||||
@@ -14,7 +14,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import shutil
|
||||
from functools import cached_property
|
||||
from typing import List, Union
|
||||
|
||||
import lance
|
||||
import numpy as np
|
||||
@@ -24,7 +26,8 @@ from lance import LanceDataset
|
||||
from lance.vector import vec_to_table
|
||||
|
||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
from .query import LanceQueryBuilder
|
||||
from .query import LanceFtsQueryBuilder, LanceQueryBuilder
|
||||
from .util import get_uri_scheme
|
||||
|
||||
|
||||
def _sanitize_data(data, schema):
|
||||
@@ -130,6 +133,27 @@ class LanceTable:
|
||||
)
|
||||
self._reset_dataset()
|
||||
|
||||
def create_fts_index(self, field_names: Union[str, List[str]]):
|
||||
"""Create a full-text search index on the table.
|
||||
|
||||
Warning - this API is highly experimental and is highly likely to change
|
||||
in the future.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field_names: str or list of str
|
||||
The name(s) of the field to index.
|
||||
"""
|
||||
from .fts import create_index, populate_index
|
||||
|
||||
if isinstance(field_names, str):
|
||||
field_names = [field_names]
|
||||
index = create_index(self._get_fts_index_path(), field_names)
|
||||
populate_index(index, self, field_names)
|
||||
|
||||
def _get_fts_index_path(self):
|
||||
return os.path.join(self._dataset_uri, "_indices", "tantivy")
|
||||
|
||||
@cached_property
|
||||
def _dataset(self) -> LanceDataset:
|
||||
return lance.dataset(self._dataset_uri, version=self._version)
|
||||
@@ -158,7 +182,7 @@ class LanceTable:
|
||||
self._reset_dataset()
|
||||
return len(self)
|
||||
|
||||
def search(self, query: VEC) -> LanceQueryBuilder:
|
||||
def search(self, query: Union[VEC, str]) -> LanceQueryBuilder:
|
||||
"""Create a search query to find the nearest neighbors
|
||||
of the given query vector.
|
||||
|
||||
@@ -174,6 +198,10 @@ class LanceTable:
|
||||
and also the "score" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
"""
|
||||
if isinstance(query, str):
|
||||
# fts
|
||||
return LanceFtsQueryBuilder(self, query)
|
||||
|
||||
if isinstance(query, list):
|
||||
query = np.array(query)
|
||||
if isinstance(query, np.ndarray):
|
||||
|
||||
Reference in New Issue
Block a user