mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-11 14:22:59 +00:00
Basic full text search capabilities (#62)
This is v1 of integrating full text search index into LanceDB.
# API
The query API is roughly the same as before, except if the input is text
instead of a vector we assume that its fts search.
## Example
If `table` is a LanceDB LanceTable, then:
Build index: `table.create_fts_index("text")`
Query: `df = table.search("puppy").limit(10).select(["text"]).to_df()`
# Implementation
Here we use the tantivy-py package to build the index. We then use the
row id's as the full-text-search index's doc id then we just do a Take
operation to fetch the rows.
# Limitations
1. don't support incremental row appends yet. New data won't show up in
search
2. local filesystem only
3. requires building tantivy explicitly
---------
Co-authored-by: Chang She <chang@lancedb.com>
This commit is contained in:
@@ -14,7 +14,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import shutil
|
||||
from functools import cached_property
|
||||
from typing import List, Union
|
||||
|
||||
import lance
|
||||
import numpy as np
|
||||
@@ -24,7 +26,8 @@ from lance import LanceDataset
|
||||
from lance.vector import vec_to_table
|
||||
|
||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
from .query import LanceQueryBuilder
|
||||
from .query import LanceFtsQueryBuilder, LanceQueryBuilder
|
||||
from .util import get_uri_scheme
|
||||
|
||||
|
||||
def _sanitize_data(data, schema):
|
||||
@@ -130,6 +133,27 @@ class LanceTable:
|
||||
)
|
||||
self._reset_dataset()
|
||||
|
||||
def create_fts_index(self, field_names: Union[str, List[str]]):
|
||||
"""Create a full-text search index on the table.
|
||||
|
||||
Warning - this API is highly experimental and is highly likely to change
|
||||
in the future.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field_names: str or list of str
|
||||
The name(s) of the field to index.
|
||||
"""
|
||||
from .fts import create_index, populate_index
|
||||
|
||||
if isinstance(field_names, str):
|
||||
field_names = [field_names]
|
||||
index = create_index(self._get_fts_index_path(), field_names)
|
||||
populate_index(index, self, field_names)
|
||||
|
||||
def _get_fts_index_path(self):
|
||||
return os.path.join(self._dataset_uri, "_indices", "tantivy")
|
||||
|
||||
@cached_property
|
||||
def _dataset(self) -> LanceDataset:
|
||||
return lance.dataset(self._dataset_uri, version=self._version)
|
||||
@@ -158,7 +182,7 @@ class LanceTable:
|
||||
self._reset_dataset()
|
||||
return len(self)
|
||||
|
||||
def search(self, query: VEC) -> LanceQueryBuilder:
|
||||
def search(self, query: Union[VEC, str]) -> LanceQueryBuilder:
|
||||
"""Create a search query to find the nearest neighbors
|
||||
of the given query vector.
|
||||
|
||||
@@ -174,6 +198,10 @@ class LanceTable:
|
||||
and also the "score" column which is the distance between the query
|
||||
vector and the returned vector.
|
||||
"""
|
||||
if isinstance(query, str):
|
||||
# fts
|
||||
return LanceFtsQueryBuilder(self, query)
|
||||
|
||||
if isinstance(query, list):
|
||||
query = np.array(query)
|
||||
if isinstance(query, np.ndarray):
|
||||
|
||||
Reference in New Issue
Block a user