Previously, when we loaded the next version of the table, we would block
all reads with a write lock. Now, we only do that if
`read_consistency_interval=0`. Otherwise, we load the next version
asynchronously in the background. This should mean that
`read_consistency_interval > 0` won't have a meaningful impact on
latency.
Along with this change, I felt it was safe to change the default
consistency interval to 5 seconds. The current default is `None`, which
means we will **never** check for a new version by default. I think that
default is contrary to most users expectations.
Previously, users could only specify new data types in `alterColumns` as
strings:
```ts
await tbl.alterColumns([
path: "price",
dataType: "float"
]);
```
But this has some problems:
1. It wasn't clear what were valid types
2. It was impossible to specify nested types, like lists and vector
columns.
This PR changes it to take an Arrow data type, similar to how the Python
API works. This allows casting vector types:
```ts
await tbl.alterColumns([
{
path: "vector",
dataType: new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float16(), false),
),
},
]);
```
Closes#2185
BREAKING CHANGE: embedding function implementations in Node need to now
call `resolveVariables()` in their constructors and should **not**
implement `toJSON()`.
This tries to address the handling of secrets. In Node, they are
currently lost. In Python, they are currently leaked into the table
schema metadata.
This PR introduces an in-memory variable store on the function registry.
It also allows embedding function definitions to label certain config
values as "sensitive", and the preprocessing logic will raise an error
if users try to pass in hard-coded values.
Closes#2110Closes#521
---------
Co-authored-by: Weston Pace <weston.pace@gmail.com>
This is done as setup for a PR that will fix the OpenAI dependency
issue.
* [x] FTS examples
* [x] Setup mock openai
* [x] Ran `npm audit fix`
* [x] sentences embeddings test
* [x] Double check formatting of docs examples
Lance now supports FTS, so add it into lancedb Python, TypeScript and
Rust SDKs.
For Python, we still use tantivy based FTS by default because the lance
FTS index now misses some features of tantivy.
For Python:
- Support to create lance based FTS index
- Support to specify columns for full text search (only available for
lance based FTS index)
For TypeScript:
- Change the search method so that it can accept both string and vector
- Support full text search
For Rust
- Support full text search
The others:
- Update the FTS doc
BREAKING CHANGE:
- for Python, this renames the attached score column of FTS from "score"
to "_score", this could be a breaking change for users that rely the
scores
---------
Signed-off-by: BubbleCal <bubble-cal@outlook.com>