add analyze plan api to allow executing the queries and see runtime
metrics.
Which help identify the query IO overhead and help identify query
slowness
Previously, when we loaded the next version of the table, we would block
all reads with a write lock. Now, we only do that if
`read_consistency_interval=0`. Otherwise, we load the next version
asynchronously in the background. This should mean that
`read_consistency_interval > 0` won't have a meaningful impact on
latency.
Along with this change, I felt it was safe to change the default
consistency interval to 5 seconds. The current default is `None`, which
means we will **never** check for a new version by default. I think that
default is contrary to most users expectations.
This PR fixes build issues associated with `aws-lc-rs`, while
simplifying the build process. Previously, we used custom scripts for
the musl and Windows ARM builds. These were complicated and prone to
breaking. This PR switches to a setup that mirrors
https://github.com/napi-rs/package-template/blob/main/.github/workflows/CI.yml.
* linux glibc and musl builds now use the Docker images provided by the
napi project
* Windows ARM build now just cross compiles from Windows x64, which
turns out to work quite well.
- adds `loss` into the index stats for vector index
- now `optimize` can retrain the vector index
---------
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Previously, users could only specify new data types in `alterColumns` as
strings:
```ts
await tbl.alterColumns([
path: "price",
dataType: "float"
]);
```
But this has some problems:
1. It wasn't clear what were valid types
2. It was impossible to specify nested types, like lists and vector
columns.
This PR changes it to take an Arrow data type, similar to how the Python
API works. This allows casting vector types:
```ts
await tbl.alterColumns([
{
path: "vector",
dataType: new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float16(), false),
),
},
]);
```
Closes#2185
Prior to this commit, issuing drop_all_tables on a listing database with
an external manifest store would delete physical tables but leave
references behind in the manifest store. The table drop would succeed,
but subsequent creation of a table with the same name would fail with a
conflict.
With this patch, the external manifest store is updated to account for
the dropped tables so that dropped table names can be reused.
In earlier PRs (#1886, #1191) we made the default limit 10 regardless of
the query type. This was confusing for users and in many cases a
breaking change. Users would have queries that used to return all
results, but instead only returned the first 10, causing silent bugs.
Part of the cause was consistency: the Python sync API seems to have
always had a limit of 10, while newer APIs (Python async and Nodejs)
didn't.
This PR sets the default limit only for searches (vector search, FTS),
while letting scans (even with filters) be unbounded. It does this
consistently for all SDKs.
Fixes#1983Fixes#1852Fixes#2141
BREAKING CHANGE: embedding function implementations in Node need to now
call `resolveVariables()` in their constructors and should **not**
implement `toJSON()`.
This tries to address the handling of secrets. In Node, they are
currently lost. In Python, they are currently leaked into the table
schema metadata.
This PR introduces an in-memory variable store on the function registry.
It also allows embedding function definitions to label certain config
values as "sensitive", and the preprocessing logic will raise an error
if users try to pass in hard-coded values.
Closes#2110Closes#521
---------
Co-authored-by: Weston Pace <weston.pace@gmail.com>
If we start supporting external catalogs then "drop database" may be
misleading (and not possible). We should be more clear that this is a
utility method to drop all tables. This is also a nice chance for some
consistency cleanup as it was `drop_db` in rust, `drop_database` in
python, and non-existent in typescript.
This PR also adds a public accessor to get the database trait from a
connection.
BREAKING CHANGE: the `drop_database` / `drop_db` methods are now
deprecated.
Closes#1106
Unfortunately, these need to be set at the connection level. I
investigated whether if we let users provide a callback they could use
`AsyncLocalStorage` to access their context. However, it doesn't seem
like NAPI supports this right now. I filed an issue:
https://github.com/napi-rs/napi-rs/issues/2456
This opens up the door for more custom database implementations than the
two we have today. The biggest change should be inivisble:
`ConnectionInternal` has been renamed to `Database`, made public, and
refactored
However, there are a few breaking changes. `data_storage_version` and
`enable_v2_manifest_paths` have been moved from options on
`create_table` to options for the database which are now set via
`storage_options`.
Before:
```
db = connect(uri)
tbl = db.create_table("my_table", data, data_storage_version="legacy", enable_v2_manifest_paths=True)
```
After:
```
db = connect(uri, storage_options={
"new_table_enable_v2_manifest_paths": "true",
"new_table_data_storage_version": "legacy"
})
tbl = db.create_table("my_table", data)
```
BREAKING CHANGE: the data_storage_version, enable_v2_manifest_paths
options have moved from options to create_table to storage_options.
BREAKING CHANGE: the use_legacy_format option has been removed,
data_storage_version has replaced it for some time now
* Make `npm run docs` fail if there are any warnings. This will catch
items missing from the API reference.
* Add a check in our CI to make sure `npm run dos` runs without warnings
and doesn't generate any new files (indicating it might be out-of-date.
* Hide constructors that aren't user facing.
* Remove unused enum `WriteMode`.
Closes#2068