mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 21:39:57 +00:00
Compare commits
20 Commits
add-python
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
81f2cdf736 | ||
|
|
d404a3590c | ||
|
|
e688484bd3 | ||
|
|
3bcd61c8de | ||
|
|
c76ec48603 | ||
|
|
d974413745 | ||
|
|
ec4f2fbd30 | ||
|
|
6375ea419a | ||
|
|
6689192cee | ||
|
|
dbec598610 | ||
|
|
8f6e7ce4f3 | ||
|
|
b482f41bf4 | ||
|
|
4dc7497547 | ||
|
|
d744972f2f | ||
|
|
9bc320874a | ||
|
|
510d449167 | ||
|
|
356e89a800 | ||
|
|
ae1cf4441d | ||
|
|
1ae08fe31d | ||
|
|
a517629c65 |
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.4.12
|
||||
current_version = 0.4.13
|
||||
commit = True
|
||||
message = Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
11
Cargo.toml
11
Cargo.toml
@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.10.2", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.10.2" }
|
||||
lance-linalg = { "version" = "=0.10.2" }
|
||||
lance-testing = { "version" = "=0.10.2" }
|
||||
lance = { "version" = "=0.10.4", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.10.4" }
|
||||
lance-linalg = { "version" = "=0.10.4" }
|
||||
lance-testing = { "version" = "=0.10.4" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "50.0", optional = false }
|
||||
arrow-array = "50.0"
|
||||
@@ -28,13 +28,14 @@ arrow-schema = "50.0"
|
||||
arrow-arith = "50.0"
|
||||
arrow-cast = "50.0"
|
||||
async-trait = "0"
|
||||
chrono = "0.4.23"
|
||||
chrono = "0.4.35"
|
||||
half = { "version" = "=2.3.1", default-features = false, features = [
|
||||
"num-traits",
|
||||
] }
|
||||
futures = "0"
|
||||
log = "0.4"
|
||||
object_store = "0.9.0"
|
||||
pin-project = "1.0.7"
|
||||
snafu = "0.7.4"
|
||||
url = "2"
|
||||
num-traits = "0.2"
|
||||
|
||||
@@ -31,7 +31,7 @@ As an example, consider starting with 128-dimensional vector consisting of 32-bi
|
||||
|
||||
While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space.
|
||||
|
||||
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
|
||||
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are initialized by running K-means over the stored vectors. The centroids of K-means turn into the seed points which then each define a region. These regions are then are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
|
||||
|
||||

|
||||
|
||||
|
||||
@@ -224,7 +224,6 @@ This embedding function supports ingesting images as both bytes and urls. You ca
|
||||
!!! info
|
||||
LanceDB supports ingesting images directly from accessible links.
|
||||
|
||||
|
||||
```python
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
@@ -290,4 +289,67 @@ print(actual.label)
|
||||
|
||||
```
|
||||
|
||||
### Imagebind embeddings
|
||||
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
|
||||
|
||||
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
|
||||
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
|
||||
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
|
||||
|
||||
Below is an example demonstrating how the API works:
|
||||
|
||||
```python
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
func = registry.get("imagebind").create()
|
||||
|
||||
class ImageBindModel(LanceModel):
|
||||
text: str
|
||||
image_uri: str = func.SourceField()
|
||||
audio_path: str
|
||||
vector: Vector(func.ndims()) = func.VectorField()
|
||||
|
||||
# add locally accessible image paths
|
||||
text_list=["A dog.", "A car", "A bird"]
|
||||
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
|
||||
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
|
||||
|
||||
# Load data
|
||||
inputs = [
|
||||
{"text": a, "audio_path": b, "image_uri": c}
|
||||
for a, b, c in zip(text_list, audio_paths, image_paths)
|
||||
]
|
||||
|
||||
#create table and add data
|
||||
table = db.create_table("img_bind", schema=ImageBindModel)
|
||||
table.add(inputs)
|
||||
```
|
||||
|
||||
Now, we can search using any modality:
|
||||
|
||||
#### image search
|
||||
```python
|
||||
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
|
||||
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "dog")
|
||||
```
|
||||
#### audio search
|
||||
|
||||
```python
|
||||
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
|
||||
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "car")
|
||||
```
|
||||
#### Text search
|
||||
You can add any input query and fetch the result as follows:
|
||||
```python
|
||||
query = "an animal which flies and tweets"
|
||||
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
|
||||
print(actual.text == "bird")
|
||||
```
|
||||
|
||||
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
|
||||
|
||||
569
docs/src/notebooks/multi_modal_video_RAG.ipynb
Normal file
569
docs/src/notebooks/multi_modal_video_RAG.ipynb
Normal file
File diff suppressed because one or more lines are too long
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.12",
|
||||
"version": "0.4.13",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.4.12",
|
||||
"version": "0.4.13",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -52,11 +52,11 @@
|
||||
"uuid": "^9.0.0"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.12",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.12",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.12",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.12",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.12"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.13",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.13",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.13",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.13",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.13"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
@@ -333,66 +333,6 @@
|
||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.4.12",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.12.tgz",
|
||||
"integrity": "sha512-38/rkJRlWXkPWXuj9onzvbrhnIWcIUQjgEp5G9v5ixPosBowm7A4j8e2Q8CJMsVSNcVX2JLqwWVldiWegZFuYw==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.4.12",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.12.tgz",
|
||||
"integrity": "sha512-psE48dztyO450hXWdv9Rl9aayM2HQ1uF9wErfC0gKmDUh1N0NdVq2viDuFpZxnmCis/nvGwKlYiYT9OnYNCJ9g==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"darwin"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.4.12",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.12.tgz",
|
||||
"integrity": "sha512-xwkgF6MiF5aAdG9JG8v4ke652YxUJrhs9z4OrsEfrENnvsIQd2C5UyKMepVLdvij4BI/XPFRFWXdjPvP7S9rTA==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.4.12",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.12.tgz",
|
||||
"integrity": "sha512-gJqYR0aymrS+C60xc4EQPzmQ5/69XfeFv2ofBvAj7qW+c6BcnoAcfVl+7s1IrcWeGz251sm5cD5Lx4AzJd89dA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"linux"
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.4.12",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.12.tgz",
|
||||
"integrity": "sha512-LhCzpyEeBUyO6L2fuVqeP3mW8kYDryyU9PNqcM01m88sZB1Do6AlwiM+GjPRQ0SpzD0LK9oxQqSmJrdcNGqjbw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
"optional": true,
|
||||
"os": [
|
||||
"win32"
|
||||
]
|
||||
},
|
||||
"node_modules/@neon-rs/cli": {
|
||||
"version": "0.0.160",
|
||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.4.12",
|
||||
"version": "0.4.13",
|
||||
"description": " Serverless, low-latency vector database for AI applications",
|
||||
"main": "dist/index.js",
|
||||
"types": "dist/index.d.ts",
|
||||
@@ -88,10 +88,10 @@
|
||||
}
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.12",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.12",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.12",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.12",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.12"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.4.13",
|
||||
"@lancedb/vectordb-darwin-x64": "0.4.13",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.13",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.13",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.13"
|
||||
}
|
||||
}
|
||||
|
||||
@@ -176,16 +176,21 @@ export async function connect (
|
||||
opts = { uri: arg }
|
||||
} else {
|
||||
// opts = { uri: arg.uri, awsCredentials = arg.awsCredentials }
|
||||
opts = Object.assign(
|
||||
{
|
||||
uri: '',
|
||||
awsCredentials: undefined,
|
||||
awsRegion: defaultAwsRegion,
|
||||
apiKey: undefined,
|
||||
region: defaultAwsRegion
|
||||
},
|
||||
arg
|
||||
)
|
||||
const keys = Object.keys(arg)
|
||||
if (keys.length === 1 && keys[0] === 'uri' && typeof arg.uri === 'string') {
|
||||
opts = { uri: arg.uri }
|
||||
} else {
|
||||
opts = Object.assign(
|
||||
{
|
||||
uri: '',
|
||||
awsCredentials: undefined,
|
||||
awsRegion: defaultAwsRegion,
|
||||
apiKey: undefined,
|
||||
region: defaultAwsRegion
|
||||
},
|
||||
arg
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
if (opts.uri.startsWith('db://')) {
|
||||
|
||||
@@ -128,6 +128,11 @@ describe('LanceDB client', function () {
|
||||
assertResults(results)
|
||||
results = await table.where('id % 2 = 0').execute()
|
||||
assertResults(results)
|
||||
|
||||
// Should reject a bad filter
|
||||
await expect(table.filter('id % 2 = 0 AND').execute()).to.be.rejectedWith(
|
||||
/.*sql parser error: Expected an expression:, found: EOF.*/
|
||||
)
|
||||
})
|
||||
|
||||
it('uses a filter / where clause', async function () {
|
||||
@@ -283,7 +288,8 @@ describe('LanceDB client', function () {
|
||||
|
||||
it('create a table from an Arrow Table', async function () {
|
||||
const dir = await track().mkdir('lancejs')
|
||||
const con = await lancedb.connect(dir)
|
||||
// Also test the connect function with an object
|
||||
const con = await lancedb.connect({ uri: dir })
|
||||
|
||||
const i32s = new Int32Array(new Array<number>(10))
|
||||
const i32 = makeVector(i32s)
|
||||
@@ -745,11 +751,11 @@ describe('LanceDB client', function () {
|
||||
num_sub_vectors: 2
|
||||
})
|
||||
await expect(createIndex).to.be.rejectedWith(
|
||||
/VectorIndex requires the column data type to be fixed size list of float32s/
|
||||
"index cannot be created on the column `name` which has data type Utf8"
|
||||
)
|
||||
})
|
||||
|
||||
it('it should fail when the column is not a vector', async function () {
|
||||
it('it should fail when num_partitions is invalid', async function () {
|
||||
const uri = await createTestDB(32, 300)
|
||||
const con = await lancedb.connect(uri)
|
||||
const table = await con.openTable('vectors')
|
||||
|
||||
@@ -14,12 +14,10 @@ crate-type = ["cdylib"]
|
||||
[dependencies]
|
||||
arrow-ipc.workspace = true
|
||||
futures.workspace = true
|
||||
lance-linalg.workspace = true
|
||||
lance.workspace = true
|
||||
lancedb = { path = "../rust/lancedb" }
|
||||
napi = { version = "2.15", default-features = false, features = [
|
||||
"napi7",
|
||||
"async"
|
||||
"async",
|
||||
] }
|
||||
napi-derive = "2"
|
||||
|
||||
|
||||
@@ -27,6 +27,7 @@ import {
|
||||
Float64,
|
||||
} from "apache-arrow";
|
||||
import { makeArrowTable } from "../dist/arrow";
|
||||
import { Index } from "../dist/indices";
|
||||
|
||||
describe("Given a table", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
@@ -65,21 +66,36 @@ describe("Given a table", () => {
|
||||
expect(table.isOpen()).toBe(false);
|
||||
expect(table.countRows()).rejects.toThrow("Table some_table is closed");
|
||||
});
|
||||
|
||||
it("should let me update values", async () => {
|
||||
await table.add([{ id: 1 }]);
|
||||
expect(await table.countRows("id == 1")).toBe(1);
|
||||
expect(await table.countRows("id == 7")).toBe(0);
|
||||
await table.update({ id: "7" });
|
||||
expect(await table.countRows("id == 1")).toBe(0);
|
||||
expect(await table.countRows("id == 7")).toBe(1);
|
||||
await table.add([{ id: 2 }]);
|
||||
// Test Map as input
|
||||
await table.update(new Map(Object.entries({ id: "10" })), {
|
||||
where: "id % 2 == 0",
|
||||
});
|
||||
expect(await table.countRows("id == 2")).toBe(0);
|
||||
expect(await table.countRows("id == 7")).toBe(1);
|
||||
expect(await table.countRows("id == 10")).toBe(1);
|
||||
});
|
||||
});
|
||||
|
||||
describe("Test creating index", () => {
|
||||
describe("When creating an index", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32(), true),
|
||||
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
||||
]);
|
||||
let tbl: Table;
|
||||
let queryVec: number[];
|
||||
|
||||
beforeEach(() => {
|
||||
beforeEach(async () => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
test("create vector index with no column", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = makeArrowTable(
|
||||
Array(300)
|
||||
@@ -94,47 +110,66 @@ describe("Test creating index", () => {
|
||||
schema,
|
||||
},
|
||||
);
|
||||
const tbl = await db.createTable("test", data);
|
||||
await tbl.createIndex().build();
|
||||
queryVec = data.toArray()[5].vec.toJSON();
|
||||
tbl = await db.createTable("test", data);
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
it("should create a vector index on vector columns", async () => {
|
||||
await tbl.createIndex("vec");
|
||||
|
||||
// check index directory
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
// TODO: check index type.
|
||||
const indices = await tbl.listIndices();
|
||||
expect(indices.length).toBe(1);
|
||||
expect(indices[0]).toEqual({
|
||||
indexType: "IvfPq",
|
||||
columns: ["vec"],
|
||||
});
|
||||
|
||||
// Search without specifying the column
|
||||
const queryVector = data.toArray()[5].vec.toJSON();
|
||||
const rst = await tbl.query().nearestTo(queryVector).limit(2).toArrow();
|
||||
const rst = await tbl.query().nearestTo(queryVec).limit(2).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search with specifying the column
|
||||
const rst2 = await tbl.search(queryVector, "vec").limit(2).toArrow();
|
||||
const rst2 = await tbl.search(queryVec, "vec").limit(2).toArrow();
|
||||
expect(rst2.numRows).toBe(2);
|
||||
expect(rst.toString()).toEqual(rst2.toString());
|
||||
});
|
||||
|
||||
test("no vector column available", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const tbl = await db.createTable(
|
||||
"no_vec",
|
||||
makeArrowTable([
|
||||
{ id: 1, val: 2 },
|
||||
{ id: 2, val: 3 },
|
||||
]),
|
||||
);
|
||||
await expect(tbl.createIndex().build()).rejects.toThrow(
|
||||
"No vector column found",
|
||||
);
|
||||
it("should allow parameters to be specified", async () => {
|
||||
await tbl.createIndex("vec", {
|
||||
config: Index.ivfPq({
|
||||
numPartitions: 10,
|
||||
}),
|
||||
});
|
||||
|
||||
await tbl.createIndex("val").build();
|
||||
const indexDir = path.join(tmpDir.name, "no_vec.lance", "_indices");
|
||||
// TODO: Verify parameters when we can load index config as part of list indices
|
||||
});
|
||||
|
||||
it("should allow me to replace (or not) an existing index", async () => {
|
||||
await tbl.createIndex("id");
|
||||
// Default is replace=true
|
||||
await tbl.createIndex("id");
|
||||
await expect(tbl.createIndex("id", { replace: false })).rejects.toThrow(
|
||||
"already exists",
|
||||
);
|
||||
await tbl.createIndex("id", { replace: true });
|
||||
});
|
||||
|
||||
test("should create a scalar index on scalar columns", async () => {
|
||||
await tbl.createIndex("id");
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
|
||||
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
|
||||
expect(r.numRows).toBe(1);
|
||||
expect(r.numRows).toBe(298);
|
||||
}
|
||||
});
|
||||
|
||||
// TODO: Move this test to the query API test (making sure we can reject queries
|
||||
// when the dimension is incorrect)
|
||||
test("two columns with different dimensions", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const schema = new Schema([
|
||||
@@ -164,14 +199,9 @@ describe("Test creating index", () => {
|
||||
);
|
||||
|
||||
// Only build index over v1
|
||||
await expect(tbl.createIndex().build()).rejects.toThrow(
|
||||
/.*More than one vector columns found.*/,
|
||||
);
|
||||
tbl
|
||||
.createIndex("vec")
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
.ivf_pq({ num_partitions: 2, num_sub_vectors: 2 })
|
||||
.build();
|
||||
await tbl.createIndex("vec", {
|
||||
config: Index.ivfPq({ numPartitions: 2, numSubVectors: 2 }),
|
||||
});
|
||||
|
||||
const rst = await tbl
|
||||
.query()
|
||||
@@ -205,30 +235,6 @@ describe("Test creating index", () => {
|
||||
expect(rst64Query.toString()).toEqual(rst64Search.toString());
|
||||
expect(rst64Query.numRows).toBe(2);
|
||||
});
|
||||
|
||||
test("create scalar index", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = makeArrowTable(
|
||||
Array(300)
|
||||
.fill(1)
|
||||
.map((_, i) => ({
|
||||
id: i,
|
||||
vec: Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
})),
|
||||
{
|
||||
schema,
|
||||
},
|
||||
);
|
||||
const tbl = await db.createTable("test", data);
|
||||
await tbl.createIndex("id").build();
|
||||
|
||||
// check index directory
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
// TODO: check index type.
|
||||
});
|
||||
});
|
||||
|
||||
describe("Read consistency interval", () => {
|
||||
@@ -348,3 +354,48 @@ describe("schema evolution", function () {
|
||||
expect(await table.schema()).toEqual(expectedSchema);
|
||||
});
|
||||
});
|
||||
|
||||
describe("when dealing with versioning", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
});
|
||||
|
||||
it("can travel in time", async () => {
|
||||
// Setup
|
||||
const con = await connect(tmpDir.name);
|
||||
const table = await con.createTable("vectors", [
|
||||
{ id: 1n, vector: [0.1, 0.2] },
|
||||
]);
|
||||
const version = await table.version();
|
||||
await table.add([{ id: 2n, vector: [0.1, 0.2] }]);
|
||||
expect(await table.countRows()).toBe(2);
|
||||
// Make sure we can rewind
|
||||
await table.checkout(version);
|
||||
expect(await table.countRows()).toBe(1);
|
||||
// Can't add data in time travel mode
|
||||
await expect(table.add([{ id: 3n, vector: [0.1, 0.2] }])).rejects.toThrow(
|
||||
"table cannot be modified when a specific version is checked out",
|
||||
);
|
||||
// Can go back to normal mode
|
||||
await table.checkoutLatest();
|
||||
expect(await table.countRows()).toBe(2);
|
||||
// Should be able to add data again
|
||||
await table.add([{ id: 2n, vector: [0.1, 0.2] }]);
|
||||
expect(await table.countRows()).toBe(3);
|
||||
// Now checkout and restore
|
||||
await table.checkout(version);
|
||||
await table.restore();
|
||||
expect(await table.countRows()).toBe(1);
|
||||
// Should be able to add data
|
||||
await table.add([{ id: 2n, vector: [0.1, 0.2] }]);
|
||||
expect(await table.countRows()).toBe(2);
|
||||
// Can't use restore if not checked out
|
||||
await expect(table.restore()).rejects.toThrow(
|
||||
"checkout before running restore",
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -18,15 +18,9 @@ import {
|
||||
ConnectionOptions,
|
||||
} from "./native.js";
|
||||
|
||||
export {
|
||||
ConnectionOptions,
|
||||
WriteOptions,
|
||||
Query,
|
||||
MetricType,
|
||||
} from "./native.js";
|
||||
export { Connection } from "./connection";
|
||||
export { Table } from "./table";
|
||||
export { IvfPQOptions, IndexBuilder } from "./indexer";
|
||||
export { ConnectionOptions, WriteOptions, Query } from "./native.js";
|
||||
export { Connection, CreateTableOptions } from "./connection";
|
||||
export { Table, AddDataOptions } from "./table";
|
||||
|
||||
/**
|
||||
* Connect to a LanceDB instance at the given URI.
|
||||
|
||||
@@ -1,105 +0,0 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// TODO: Re-enable this as part of https://github.com/lancedb/lancedb/pull/1052
|
||||
/* eslint-disable @typescript-eslint/naming-convention */
|
||||
|
||||
import {
|
||||
MetricType,
|
||||
IndexBuilder as NativeBuilder,
|
||||
Table as NativeTable,
|
||||
} from "./native";
|
||||
|
||||
/** Options to create `IVF_PQ` index */
|
||||
export interface IvfPQOptions {
|
||||
/** Number of IVF partitions. */
|
||||
num_partitions?: number;
|
||||
|
||||
/** Number of sub-vectors in PQ coding. */
|
||||
num_sub_vectors?: number;
|
||||
|
||||
/** Number of bits used for each PQ code.
|
||||
*/
|
||||
num_bits?: number;
|
||||
|
||||
/** Metric type to calculate the distance between vectors.
|
||||
*
|
||||
* Supported metrics: `L2`, `Cosine` and `Dot`.
|
||||
*/
|
||||
metric_type?: MetricType;
|
||||
|
||||
/** Number of iterations to train K-means.
|
||||
*
|
||||
* Default is 50. The more iterations it usually yield better results,
|
||||
* but it takes longer to train.
|
||||
*/
|
||||
max_iterations?: number;
|
||||
|
||||
sample_rate?: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Building an index on LanceDB {@link Table}
|
||||
*
|
||||
* @see {@link Table.createIndex} for detailed usage.
|
||||
*/
|
||||
export class IndexBuilder {
|
||||
private inner: NativeBuilder;
|
||||
|
||||
constructor(tbl: NativeTable) {
|
||||
this.inner = tbl.createIndex();
|
||||
}
|
||||
|
||||
/** Instruct the builder to build an `IVF_PQ` index */
|
||||
ivf_pq(options?: IvfPQOptions): IndexBuilder {
|
||||
this.inner.ivfPq(
|
||||
options?.metric_type,
|
||||
options?.num_partitions,
|
||||
options?.num_sub_vectors,
|
||||
options?.num_bits,
|
||||
options?.max_iterations,
|
||||
options?.sample_rate,
|
||||
);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Instruct the builder to build a Scalar index. */
|
||||
scalar(): IndexBuilder {
|
||||
this.scalar();
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Set the column(s) to create index on top of. */
|
||||
column(col: string): IndexBuilder {
|
||||
this.inner.column(col);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Set to true to replace existing index. */
|
||||
replace(val: boolean): IndexBuilder {
|
||||
this.inner.replace(val);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Specify the name of the index. Optional */
|
||||
name(n: string): IndexBuilder {
|
||||
this.inner.name(n);
|
||||
return this;
|
||||
}
|
||||
|
||||
/** Building the index. */
|
||||
async build() {
|
||||
await this.inner.build();
|
||||
}
|
||||
}
|
||||
195
nodejs/lancedb/indices.ts
Normal file
195
nodejs/lancedb/indices.ts
Normal file
@@ -0,0 +1,195 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { Index as LanceDbIndex } from "./native";
|
||||
|
||||
/**
|
||||
* Options to create an `IVF_PQ` index
|
||||
*/
|
||||
export interface IvfPqOptions {
|
||||
/** The number of IVF partitions to create.
|
||||
*
|
||||
* This value should generally scale with the number of rows in the dataset.
|
||||
* By default the number of partitions is the square root of the number of
|
||||
* rows.
|
||||
*
|
||||
* If this value is too large then the first part of the search (picking the
|
||||
* right partition) will be slow. If this value is too small then the second
|
||||
* part of the search (searching within a partition) will be slow.
|
||||
*/
|
||||
numPartitions?: number;
|
||||
|
||||
/** Number of sub-vectors of PQ.
|
||||
*
|
||||
* This value controls how much the vector is compressed during the quantization step.
|
||||
* The more sub vectors there are the less the vector is compressed. The default is
|
||||
* the dimension of the vector divided by 16. If the dimension is not evenly divisible
|
||||
* by 16 we use the dimension divded by 8.
|
||||
*
|
||||
* The above two cases are highly preferred. Having 8 or 16 values per subvector allows
|
||||
* us to use efficient SIMD instructions.
|
||||
*
|
||||
* If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
|
||||
* will likely result in poor performance.
|
||||
*/
|
||||
numSubVectors?: number;
|
||||
|
||||
/** [DistanceType] to use to build the index.
|
||||
*
|
||||
* Default value is [DistanceType::L2].
|
||||
*
|
||||
* This is used when training the index to calculate the IVF partitions
|
||||
* (vectors are grouped in partitions with similar vectors according to this
|
||||
* distance type) and to calculate a subvector's code during quantization.
|
||||
*
|
||||
* The distance type used to train an index MUST match the distance type used
|
||||
* to search the index. Failure to do so will yield inaccurate results.
|
||||
*
|
||||
* The following distance types are available:
|
||||
*
|
||||
* "l2" - Euclidean distance. This is a very common distance metric that
|
||||
* accounts for both magnitude and direction when determining the distance
|
||||
* between vectors. L2 distance has a range of [0, ∞).
|
||||
*
|
||||
* "cosine" - Cosine distance. Cosine distance is a distance metric
|
||||
* calculated from the cosine similarity between two vectors. Cosine
|
||||
* similarity is a measure of similarity between two non-zero vectors of an
|
||||
* inner product space. It is defined to equal the cosine of the angle
|
||||
* between them. Unlike L2, the cosine distance is not affected by the
|
||||
* magnitude of the vectors. Cosine distance has a range of [0, 2].
|
||||
*
|
||||
* Note: the cosine distance is undefined when one (or both) of the vectors
|
||||
* are all zeros (there is no direction). These vectors are invalid and may
|
||||
* never be returned from a vector search.
|
||||
*
|
||||
* "dot" - Dot product. Dot distance is the dot product of two vectors. Dot
|
||||
* distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
|
||||
* L2 norm is 1), then dot distance is equivalent to the cosine distance.
|
||||
*/
|
||||
distanceType?: "l2" | "cosine" | "dot";
|
||||
|
||||
/** Max iteration to train IVF kmeans.
|
||||
*
|
||||
* When training an IVF PQ index we use kmeans to calculate the partitions. This parameter
|
||||
* controls how many iterations of kmeans to run.
|
||||
*
|
||||
* Increasing this might improve the quality of the index but in most cases these extra
|
||||
* iterations have diminishing returns.
|
||||
*
|
||||
* The default value is 50.
|
||||
*/
|
||||
maxIterations?: number;
|
||||
|
||||
/** The number of vectors, per partition, to sample when training IVF kmeans.
|
||||
*
|
||||
* When an IVF PQ index is trained, we need to calculate partitions. These are groups
|
||||
* of vectors that are similar to each other. To do this we use an algorithm called kmeans.
|
||||
*
|
||||
* Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
|
||||
* random sample of the data. This parameter controls the size of the sample. The total
|
||||
* number of vectors used to train the index is `sample_rate * num_partitions`.
|
||||
*
|
||||
* Increasing this value might improve the quality of the index but in most cases the
|
||||
* default should be sufficient.
|
||||
*
|
||||
* The default value is 256.
|
||||
*/
|
||||
sampleRate?: number;
|
||||
}
|
||||
|
||||
export class Index {
|
||||
private readonly inner: LanceDbIndex;
|
||||
private constructor(inner: LanceDbIndex) {
|
||||
this.inner = inner;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create an IvfPq index
|
||||
*
|
||||
* This index stores a compressed (quantized) copy of every vector. These vectors
|
||||
* are grouped into partitions of similar vectors. Each partition keeps track of
|
||||
* a centroid which is the average value of all vectors in the group.
|
||||
*
|
||||
* During a query the centroids are compared with the query vector to find the closest
|
||||
* partitions. The compressed vectors in these partitions are then searched to find
|
||||
* the closest vectors.
|
||||
*
|
||||
* The compression scheme is called product quantization. Each vector is divided into
|
||||
* subvectors and then each subvector is quantized into a small number of bits. the
|
||||
* parameters `num_bits` and `num_subvectors` control this process, providing a tradeoff
|
||||
* between index size (and thus search speed) and index accuracy.
|
||||
*
|
||||
* The partitioning process is called IVF and the `num_partitions` parameter controls how
|
||||
* many groups to create.
|
||||
*
|
||||
* Note that training an IVF PQ index on a large dataset is a slow operation and
|
||||
* currently is also a memory intensive operation.
|
||||
*/
|
||||
static ivfPq(options?: Partial<IvfPqOptions>) {
|
||||
return new Index(
|
||||
LanceDbIndex.ivfPq(
|
||||
options?.distanceType,
|
||||
options?.numPartitions,
|
||||
options?.numSubVectors,
|
||||
options?.maxIterations,
|
||||
options?.sampleRate,
|
||||
),
|
||||
);
|
||||
}
|
||||
|
||||
/** Create a btree index
|
||||
*
|
||||
* A btree index is an index on a scalar columns. The index stores a copy of the column
|
||||
* in sorted order. A header entry is created for each block of rows (currently the
|
||||
* block size is fixed at 4096). These header entries are stored in a separate
|
||||
* cacheable structure (a btree). To search for data the header is used to determine
|
||||
* which blocks need to be read from disk.
|
||||
*
|
||||
* For example, a btree index in a table with 1Bi rows requires sizeof(Scalar) * 256Ki
|
||||
* bytes of memory and will generally need to read sizeof(Scalar) * 4096 bytes to find
|
||||
* the correct row ids.
|
||||
*
|
||||
* This index is good for scalar columns with mostly distinct values and does best when
|
||||
* the query is highly selective.
|
||||
*
|
||||
* The btree index does not currently have any parameters though parameters such as the
|
||||
* block size may be added in the future.
|
||||
*/
|
||||
static btree() {
|
||||
return new Index(LanceDbIndex.btree());
|
||||
}
|
||||
}
|
||||
|
||||
export interface IndexOptions {
|
||||
/** Advanced index configuration
|
||||
*
|
||||
* This option allows you to specify a specfic index to create and also
|
||||
* allows you to pass in configuration for training the index.
|
||||
*
|
||||
* See the static methods on Index for details on the various index types.
|
||||
*
|
||||
* If this is not supplied then column data type(s) and column statistics
|
||||
* will be used to determine the most useful kind of index to create.
|
||||
*/
|
||||
config?: Index;
|
||||
/** Whether to replace the existing index
|
||||
*
|
||||
* If this is false, and another index already exists on the same columns
|
||||
* and the same name, then an error will be returned. This is true even if
|
||||
* that index is out of date.
|
||||
*
|
||||
* The default is true
|
||||
*/
|
||||
replace?: boolean;
|
||||
}
|
||||
37
nodejs/lancedb/native.d.ts
vendored
37
nodejs/lancedb/native.d.ts
vendored
@@ -3,14 +3,17 @@
|
||||
|
||||
/* auto-generated by NAPI-RS */
|
||||
|
||||
export const enum IndexType {
|
||||
Scalar = 0,
|
||||
IvfPq = 1
|
||||
}
|
||||
export const enum MetricType {
|
||||
L2 = 0,
|
||||
Cosine = 1,
|
||||
Dot = 2
|
||||
/** A description of an index currently configured on a column */
|
||||
export interface IndexConfig {
|
||||
/** The type of the index */
|
||||
indexType: string
|
||||
/**
|
||||
* The columns in the index
|
||||
*
|
||||
* Currently this is always an array of size 1. In the future there may
|
||||
* be more columns to represent composite indices.
|
||||
*/
|
||||
columns: Array<string>
|
||||
}
|
||||
/**
|
||||
* A definition of a column alteration. The alteration changes the column at
|
||||
@@ -93,13 +96,9 @@ export class Connection {
|
||||
/** Drop table with the name. Or raise an error if the table does not exist. */
|
||||
dropTable(name: string): Promise<void>
|
||||
}
|
||||
export class IndexBuilder {
|
||||
replace(v: boolean): void
|
||||
column(c: string): void
|
||||
name(name: string): void
|
||||
ivfPq(metricType?: MetricType | undefined | null, numPartitions?: number | undefined | null, numSubVectors?: number | undefined | null, numBits?: number | undefined | null, maxIterations?: number | undefined | null, sampleRate?: number | undefined | null): void
|
||||
scalar(): void
|
||||
build(): Promise<void>
|
||||
export class Index {
|
||||
static ivfPq(distanceType?: string | undefined | null, numPartitions?: number | undefined | null, numSubVectors?: number | undefined | null, maxIterations?: number | undefined | null, sampleRate?: number | undefined | null): Index
|
||||
static btree(): Index
|
||||
}
|
||||
/** Typescript-style Async Iterator over RecordBatches */
|
||||
export class RecordBatchIterator {
|
||||
@@ -125,9 +124,15 @@ export class Table {
|
||||
add(buf: Buffer, mode: string): Promise<void>
|
||||
countRows(filter?: string | undefined | null): Promise<number>
|
||||
delete(predicate: string): Promise<void>
|
||||
createIndex(): IndexBuilder
|
||||
createIndex(index: Index | undefined | null, column: string, replace?: boolean | undefined | null): Promise<void>
|
||||
update(onlyIf: string | undefined | null, columns: Array<[string, string]>): Promise<void>
|
||||
query(): Query
|
||||
addColumns(transforms: Array<AddColumnsSql>): Promise<void>
|
||||
alterColumns(alterations: Array<ColumnAlteration>): Promise<void>
|
||||
dropColumns(columns: Array<string>): Promise<void>
|
||||
version(): Promise<number>
|
||||
checkout(version: number): Promise<void>
|
||||
checkoutLatest(): Promise<void>
|
||||
restore(): Promise<void>
|
||||
listIndices(): Promise<Array<IndexConfig>>
|
||||
}
|
||||
|
||||
@@ -295,12 +295,10 @@ if (!nativeBinding) {
|
||||
throw new Error(`Failed to load native binding`)
|
||||
}
|
||||
|
||||
const { Connection, IndexType, MetricType, IndexBuilder, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
|
||||
const { Connection, Index, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
|
||||
|
||||
module.exports.Connection = Connection
|
||||
module.exports.IndexType = IndexType
|
||||
module.exports.MetricType = MetricType
|
||||
module.exports.IndexBuilder = IndexBuilder
|
||||
module.exports.Index = Index
|
||||
module.exports.RecordBatchIterator = RecordBatchIterator
|
||||
module.exports.Query = Query
|
||||
module.exports.Table = Table
|
||||
|
||||
@@ -16,12 +16,14 @@ import { Schema, tableFromIPC } from "apache-arrow";
|
||||
import {
|
||||
AddColumnsSql,
|
||||
ColumnAlteration,
|
||||
IndexConfig,
|
||||
Table as _NativeTable,
|
||||
} from "./native";
|
||||
import { Query } from "./query";
|
||||
import { IndexBuilder } from "./indexer";
|
||||
import { IndexOptions } from "./indices";
|
||||
import { Data, fromDataToBuffer } from "./arrow";
|
||||
|
||||
export { IndexConfig } from "./native";
|
||||
/**
|
||||
* Options for adding data to a table.
|
||||
*/
|
||||
@@ -33,6 +35,20 @@ export interface AddDataOptions {
|
||||
mode: "append" | "overwrite";
|
||||
}
|
||||
|
||||
export interface UpdateOptions {
|
||||
/**
|
||||
* A filter that limits the scope of the update.
|
||||
*
|
||||
* This should be an SQL filter expression.
|
||||
*
|
||||
* Only rows that satisfy the expression will be updated.
|
||||
*
|
||||
* For example, this could be 'my_col == 0' to replace all instances
|
||||
* of 0 in a column with some other default value.
|
||||
*/
|
||||
where: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* A Table is a collection of Records in a LanceDB Database.
|
||||
*
|
||||
@@ -93,6 +109,45 @@ export class Table {
|
||||
await this.inner.add(buffer, mode);
|
||||
}
|
||||
|
||||
/**
|
||||
* Update existing records in the Table
|
||||
*
|
||||
* An update operation can be used to adjust existing values. Use the
|
||||
* returned builder to specify which columns to update. The new value
|
||||
* can be a literal value (e.g. replacing nulls with some default value)
|
||||
* or an expression applied to the old value (e.g. incrementing a value)
|
||||
*
|
||||
* An optional condition can be specified (e.g. "only update if the old
|
||||
* value is 0")
|
||||
*
|
||||
* Note: if your condition is something like "some_id_column == 7" and
|
||||
* you are updating many rows (with different ids) then you will get
|
||||
* better performance with a single [`merge_insert`] call instead of
|
||||
* repeatedly calilng this method.
|
||||
*
|
||||
* @param updates the columns to update
|
||||
*
|
||||
* Keys in the map should specify the name of the column to update.
|
||||
* Values in the map provide the new value of the column. These can
|
||||
* be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
|
||||
* based on the row being updated (e.g. "my_col + 1")
|
||||
*
|
||||
* @param options additional options to control the update behavior
|
||||
*/
|
||||
async update(
|
||||
updates: Map<string, string> | Record<string, string>,
|
||||
options?: Partial<UpdateOptions>,
|
||||
) {
|
||||
const onlyIf = options?.where;
|
||||
let columns: [string, string][];
|
||||
if (updates instanceof Map) {
|
||||
columns = Array.from(updates.entries());
|
||||
} else {
|
||||
columns = Object.entries(updates);
|
||||
}
|
||||
await this.inner.update(onlyIf, columns);
|
||||
}
|
||||
|
||||
/** Count the total number of rows in the dataset. */
|
||||
async countRows(filter?: string): Promise<number> {
|
||||
return await this.inner.countRows(filter);
|
||||
@@ -103,24 +158,28 @@ export class Table {
|
||||
await this.inner.delete(predicate);
|
||||
}
|
||||
|
||||
/** Create an index over the columns.
|
||||
/** Create an index to speed up queries.
|
||||
*
|
||||
* @param {string} column The column to create the index on. If not specified,
|
||||
* it will create an index on vector field.
|
||||
* Indices can be created on vector columns or scalar columns.
|
||||
* Indices on vector columns will speed up vector searches.
|
||||
* Indices on scalar columns will speed up filtering (in both
|
||||
* vector and non-vector searches)
|
||||
*
|
||||
* @example
|
||||
*
|
||||
* By default, it creates vector idnex on one vector column.
|
||||
* If the column has a vector (fixed size list) data type then
|
||||
* an IvfPq vector index will be created.
|
||||
*
|
||||
* ```typescript
|
||||
* const table = await conn.openTable("my_table");
|
||||
* await table.createIndex().build();
|
||||
* await table.createIndex(["vector"]);
|
||||
* ```
|
||||
*
|
||||
* You can specify `IVF_PQ` parameters via `ivf_pq({})` call.
|
||||
* For advanced control over vector index creation you can specify
|
||||
* the index type and options.
|
||||
* ```typescript
|
||||
* const table = await conn.openTable("my_table");
|
||||
* await table.createIndex("my_vec_col")
|
||||
* await table.createIndex(["vector"], I)
|
||||
* .ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
|
||||
* .build();
|
||||
* ```
|
||||
@@ -131,12 +190,11 @@ export class Table {
|
||||
* await table.createIndex("my_float_col").build();
|
||||
* ```
|
||||
*/
|
||||
createIndex(column?: string): IndexBuilder {
|
||||
let builder = new IndexBuilder(this.inner);
|
||||
if (column !== undefined) {
|
||||
builder = builder.column(column);
|
||||
}
|
||||
return builder;
|
||||
async createIndex(column: string, options?: Partial<IndexOptions>) {
|
||||
// Bit of a hack to get around the fact that TS has no package-scope.
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
const nativeIndex = (options?.config as any)?.inner;
|
||||
await this.inner.createIndex(nativeIndex, column, options?.replace);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -232,4 +290,65 @@ export class Table {
|
||||
async dropColumns(columnNames: string[]): Promise<void> {
|
||||
await this.inner.dropColumns(columnNames);
|
||||
}
|
||||
|
||||
/** Retrieve the version of the table
|
||||
*
|
||||
* LanceDb supports versioning. Every operation that modifies the table increases
|
||||
* version. As long as a version hasn't been deleted you can `[Self::checkout]` that
|
||||
* version to view the data at that point. In addition, you can `[Self::restore]` the
|
||||
* version to replace the current table with a previous version.
|
||||
*/
|
||||
async version(): Promise<number> {
|
||||
return await this.inner.version();
|
||||
}
|
||||
|
||||
/** Checks out a specific version of the Table
|
||||
*
|
||||
* Any read operation on the table will now access the data at the checked out version.
|
||||
* As a consequence, calling this method will disable any read consistency interval
|
||||
* that was previously set.
|
||||
*
|
||||
* This is a read-only operation that turns the table into a sort of "view"
|
||||
* or "detached head". Other table instances will not be affected. To make the change
|
||||
* permanent you can use the `[Self::restore]` method.
|
||||
*
|
||||
* Any operation that modifies the table will fail while the table is in a checked
|
||||
* out state.
|
||||
*
|
||||
* To return the table to a normal state use `[Self::checkout_latest]`
|
||||
*/
|
||||
async checkout(version: number): Promise<void> {
|
||||
await this.inner.checkout(version);
|
||||
}
|
||||
|
||||
/** Ensures the table is pointing at the latest version
|
||||
*
|
||||
* This can be used to manually update a table when the read_consistency_interval is None
|
||||
* It can also be used to undo a `[Self::checkout]` operation
|
||||
*/
|
||||
async checkoutLatest(): Promise<void> {
|
||||
await this.inner.checkoutLatest();
|
||||
}
|
||||
|
||||
/** Restore the table to the currently checked out version
|
||||
*
|
||||
* This operation will fail if checkout has not been called previously
|
||||
*
|
||||
* This operation will overwrite the latest version of the table with a
|
||||
* previous version. Any changes made since the checked out version will
|
||||
* no longer be visible.
|
||||
*
|
||||
* Once the operation concludes the table will no longer be in a checked
|
||||
* out state and the read_consistency_interval, if any, will apply.
|
||||
*/
|
||||
async restore(): Promise<void> {
|
||||
await this.inner.restore();
|
||||
}
|
||||
|
||||
/**
|
||||
* List all indices that have been created with Self::create_index
|
||||
*/
|
||||
async listIndices(): Promise<IndexConfig[]> {
|
||||
return await this.inner.listIndices();
|
||||
}
|
||||
}
|
||||
|
||||
12
nodejs/src/error.rs
Normal file
12
nodejs/src/error.rs
Normal file
@@ -0,0 +1,12 @@
|
||||
pub type Result<T> = napi::Result<T>;
|
||||
|
||||
pub trait NapiErrorExt<T> {
|
||||
/// Convert to a napi error using from_reason(err.to_string())
|
||||
fn default_error(self) -> Result<T>;
|
||||
}
|
||||
|
||||
impl<T> NapiErrorExt<T> for std::result::Result<T, lancedb::Error> {
|
||||
fn default_error(self) -> Result<T> {
|
||||
self.map_err(|err| napi::Error::from_reason(err.to_string()))
|
||||
}
|
||||
}
|
||||
@@ -14,126 +14,73 @@
|
||||
|
||||
use std::sync::Mutex;
|
||||
|
||||
use lance_linalg::distance::MetricType as LanceMetricType;
|
||||
use lancedb::index::IndexBuilder as LanceDbIndexBuilder;
|
||||
use lancedb::Table as LanceDbTable;
|
||||
use lancedb::index::scalar::BTreeIndexBuilder;
|
||||
use lancedb::index::vector::IvfPqIndexBuilder;
|
||||
use lancedb::index::Index as LanceDbIndex;
|
||||
use lancedb::DistanceType;
|
||||
use napi_derive::napi;
|
||||
|
||||
#[napi]
|
||||
pub enum IndexType {
|
||||
Scalar,
|
||||
IvfPq,
|
||||
pub struct Index {
|
||||
inner: Mutex<Option<LanceDbIndex>>,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub enum MetricType {
|
||||
L2,
|
||||
Cosine,
|
||||
Dot,
|
||||
}
|
||||
|
||||
impl From<MetricType> for LanceMetricType {
|
||||
fn from(metric: MetricType) -> Self {
|
||||
match metric {
|
||||
MetricType::L2 => Self::L2,
|
||||
MetricType::Cosine => Self::Cosine,
|
||||
MetricType::Dot => Self::Dot,
|
||||
}
|
||||
impl Index {
|
||||
pub fn consume(&self) -> napi::Result<LanceDbIndex> {
|
||||
self.inner
|
||||
.lock()
|
||||
.unwrap()
|
||||
.take()
|
||||
.ok_or(napi::Error::from_reason(
|
||||
"attempt to use an index more than once",
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub struct IndexBuilder {
|
||||
inner: Mutex<Option<LanceDbIndexBuilder>>,
|
||||
}
|
||||
|
||||
impl IndexBuilder {
|
||||
fn modify(
|
||||
&self,
|
||||
mod_fn: impl Fn(LanceDbIndexBuilder) -> LanceDbIndexBuilder,
|
||||
) -> napi::Result<()> {
|
||||
let mut inner = self.inner.lock().unwrap();
|
||||
let inner_builder = inner.take().ok_or_else(|| {
|
||||
napi::Error::from_reason("IndexBuilder has already been consumed".to_string())
|
||||
})?;
|
||||
let inner_builder = mod_fn(inner_builder);
|
||||
inner.replace(inner_builder);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl IndexBuilder {
|
||||
pub fn new(tbl: &LanceDbTable) -> Self {
|
||||
let inner = tbl.create_index(&[]);
|
||||
Self {
|
||||
inner: Mutex::new(Some(inner)),
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn replace(&self, v: bool) -> napi::Result<()> {
|
||||
self.modify(|b| b.replace(v))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn column(&self, c: String) -> napi::Result<()> {
|
||||
self.modify(|b| b.columns(&[c.as_str()]))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn name(&self, name: String) -> napi::Result<()> {
|
||||
self.modify(|b| b.name(name.as_str()))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl Index {
|
||||
#[napi(factory)]
|
||||
pub fn ivf_pq(
|
||||
&self,
|
||||
metric_type: Option<MetricType>,
|
||||
distance_type: Option<String>,
|
||||
num_partitions: Option<u32>,
|
||||
num_sub_vectors: Option<u32>,
|
||||
num_bits: Option<u32>,
|
||||
max_iterations: Option<u32>,
|
||||
sample_rate: Option<u32>,
|
||||
) -> napi::Result<()> {
|
||||
self.modify(|b| {
|
||||
let mut b = b.ivf_pq();
|
||||
if let Some(metric_type) = metric_type {
|
||||
b = b.metric_type(metric_type.into());
|
||||
}
|
||||
if let Some(num_partitions) = num_partitions {
|
||||
b = b.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(num_sub_vectors) = num_sub_vectors {
|
||||
b = b.num_sub_vectors(num_sub_vectors);
|
||||
}
|
||||
if let Some(num_bits) = num_bits {
|
||||
b = b.num_bits(num_bits);
|
||||
}
|
||||
if let Some(max_iterations) = max_iterations {
|
||||
b = b.max_iterations(max_iterations);
|
||||
}
|
||||
if let Some(sample_rate) = sample_rate {
|
||||
b = b.sample_rate(sample_rate);
|
||||
}
|
||||
b
|
||||
) -> napi::Result<Self> {
|
||||
let mut ivf_pq_builder = IvfPqIndexBuilder::default();
|
||||
if let Some(distance_type) = distance_type {
|
||||
let distance_type = match distance_type.as_str() {
|
||||
"l2" => Ok(DistanceType::L2),
|
||||
"cosine" => Ok(DistanceType::Cosine),
|
||||
"dot" => Ok(DistanceType::Dot),
|
||||
_ => Err(napi::Error::from_reason(format!(
|
||||
"Invalid distance type '{}'. Must be one of l2, cosine, or dot",
|
||||
distance_type
|
||||
))),
|
||||
}?;
|
||||
ivf_pq_builder = ivf_pq_builder.distance_type(distance_type);
|
||||
}
|
||||
if let Some(num_partitions) = num_partitions {
|
||||
ivf_pq_builder = ivf_pq_builder.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(num_sub_vectors) = num_sub_vectors {
|
||||
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
|
||||
}
|
||||
if let Some(max_iterations) = max_iterations {
|
||||
ivf_pq_builder = ivf_pq_builder.max_iterations(max_iterations);
|
||||
}
|
||||
if let Some(sample_rate) = sample_rate {
|
||||
ivf_pq_builder = ivf_pq_builder.sample_rate(sample_rate);
|
||||
}
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::IvfPq(ivf_pq_builder))),
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn scalar(&self) -> napi::Result<()> {
|
||||
self.modify(|b| b.scalar())
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn build(&self) -> napi::Result<()> {
|
||||
let inner = self.inner.lock().unwrap().take().ok_or_else(|| {
|
||||
napi::Error::from_reason("IndexBuilder has already been consumed".to_string())
|
||||
})?;
|
||||
inner
|
||||
.build()
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to build index: {}", e)))?;
|
||||
Ok(())
|
||||
#[napi(factory)]
|
||||
pub fn btree() -> Self {
|
||||
Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
// limitations under the License.
|
||||
|
||||
use futures::StreamExt;
|
||||
use lance::io::RecordBatchStream;
|
||||
use lancedb::arrow::SendableRecordBatchStream;
|
||||
use lancedb::ipc::batches_to_ipc_file;
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
@@ -21,12 +21,12 @@ use napi_derive::napi;
|
||||
/** Typescript-style Async Iterator over RecordBatches */
|
||||
#[napi]
|
||||
pub struct RecordBatchIterator {
|
||||
inner: Box<dyn RecordBatchStream + Unpin>,
|
||||
inner: SendableRecordBatchStream,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl RecordBatchIterator {
|
||||
pub(crate) fn new(inner: Box<dyn RecordBatchStream + Unpin>) -> Self {
|
||||
pub(crate) fn new(inner: SendableRecordBatchStream) -> Self {
|
||||
Self { inner }
|
||||
}
|
||||
|
||||
|
||||
@@ -16,6 +16,7 @@ use connection::Connection;
|
||||
use napi_derive::*;
|
||||
|
||||
mod connection;
|
||||
mod error;
|
||||
mod index;
|
||||
mod iterator;
|
||||
mod query;
|
||||
|
||||
@@ -74,6 +74,6 @@ impl Query {
|
||||
let inner_stream = self.inner.execute_stream().await.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
|
||||
})?;
|
||||
Ok(RecordBatchIterator::new(Box::new(inner_stream)))
|
||||
Ok(RecordBatchIterator::new(inner_stream))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,13 +13,16 @@
|
||||
// limitations under the License.
|
||||
|
||||
use arrow_ipc::writer::FileWriter;
|
||||
use lance::dataset::ColumnAlteration as LanceColumnAlteration;
|
||||
use lancedb::ipc::ipc_file_to_batches;
|
||||
use lancedb::table::{AddDataMode, Table as LanceDbTable};
|
||||
use lancedb::table::{
|
||||
AddDataMode, ColumnAlteration as LanceColumnAlteration, NewColumnTransform,
|
||||
Table as LanceDbTable,
|
||||
};
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
|
||||
use crate::index::IndexBuilder;
|
||||
use crate::error::NapiErrorExt;
|
||||
use crate::index::Index;
|
||||
use crate::query::Query;
|
||||
|
||||
#[napi]
|
||||
@@ -129,8 +132,38 @@ impl Table {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn create_index(&self) -> napi::Result<IndexBuilder> {
|
||||
Ok(IndexBuilder::new(self.inner_ref()?))
|
||||
pub async fn create_index(
|
||||
&self,
|
||||
index: Option<&Index>,
|
||||
column: String,
|
||||
replace: Option<bool>,
|
||||
) -> napi::Result<()> {
|
||||
let lancedb_index = if let Some(index) = index {
|
||||
index.consume()?
|
||||
} else {
|
||||
lancedb::index::Index::Auto
|
||||
};
|
||||
let mut builder = self.inner_ref()?.create_index(&[column], lancedb_index);
|
||||
if let Some(replace) = replace {
|
||||
builder = builder.replace(replace);
|
||||
}
|
||||
builder.execute().await.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn update(
|
||||
&self,
|
||||
only_if: Option<String>,
|
||||
columns: Vec<(String, String)>,
|
||||
) -> napi::Result<()> {
|
||||
let mut op = self.inner_ref()?.update();
|
||||
if let Some(only_if) = only_if {
|
||||
op = op.only_if(only_if);
|
||||
}
|
||||
for (column_name, value) in columns {
|
||||
op = op.column(column_name, value);
|
||||
}
|
||||
op.execute().await.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
@@ -144,7 +177,7 @@ impl Table {
|
||||
.into_iter()
|
||||
.map(|sql| (sql.name, sql.value_sql))
|
||||
.collect::<Vec<_>>();
|
||||
let transforms = lance::dataset::NewColumnTransform::SqlExpressions(transforms);
|
||||
let transforms = NewColumnTransform::SqlExpressions(transforms);
|
||||
self.inner_ref()?
|
||||
.add_columns(transforms, None)
|
||||
.await
|
||||
@@ -197,6 +230,67 @@ impl Table {
|
||||
})?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn version(&self) -> napi::Result<i64> {
|
||||
self.inner_ref()?
|
||||
.version()
|
||||
.await
|
||||
.map(|val| val as i64)
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn checkout(&self, version: i64) -> napi::Result<()> {
|
||||
self.inner_ref()?
|
||||
.checkout(version as u64)
|
||||
.await
|
||||
.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn checkout_latest(&self) -> napi::Result<()> {
|
||||
self.inner_ref()?.checkout_latest().await.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn restore(&self) -> napi::Result<()> {
|
||||
self.inner_ref()?.restore().await.default_error()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn list_indices(&self) -> napi::Result<Vec<IndexConfig>> {
|
||||
Ok(self
|
||||
.inner_ref()?
|
||||
.list_indices()
|
||||
.await
|
||||
.default_error()?
|
||||
.into_iter()
|
||||
.map(IndexConfig::from)
|
||||
.collect::<Vec<_>>())
|
||||
}
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
/// A description of an index currently configured on a column
|
||||
pub struct IndexConfig {
|
||||
/// The type of the index
|
||||
pub index_type: String,
|
||||
/// The columns in the index
|
||||
///
|
||||
/// Currently this is always an array of size 1. In the future there may
|
||||
/// be more columns to represent composite indices.
|
||||
pub columns: Vec<String>,
|
||||
}
|
||||
|
||||
impl From<lancedb::index::IndexConfig> for IndexConfig {
|
||||
fn from(value: lancedb::index::IndexConfig) -> Self {
|
||||
let index_type = format!("{:?}", value.index_type);
|
||||
Self {
|
||||
index_type,
|
||||
columns: value.columns,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A definition of a column alteration. The alteration changes the column at
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.6.2
|
||||
current_version = 0.6.4
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
[project]
|
||||
name = "lancedb"
|
||||
version = "0.6.2"
|
||||
version = "0.6.4"
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.10.2",
|
||||
"pylance==0.10.4",
|
||||
"ratelimiter~=1.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.27.0",
|
||||
@@ -81,6 +81,7 @@ embeddings = [
|
||||
"awscli>=1.29.57",
|
||||
"botocore>=1.31.57",
|
||||
]
|
||||
azure = ["adlfs>=2024.2.0"]
|
||||
|
||||
[tool.maturin]
|
||||
python-source = "python"
|
||||
|
||||
@@ -23,8 +23,9 @@ from ._lancedb import connect as lancedb_connect
|
||||
from .common import URI, sanitize_uri
|
||||
from .db import AsyncConnection, DBConnection, LanceDBConnection
|
||||
from .remote.db import RemoteDBConnection
|
||||
from .schema import vector # noqa: F401
|
||||
from .utils import sentry_log # noqa: F401
|
||||
from .schema import vector
|
||||
from .table import AsyncTable
|
||||
from .utils import sentry_log
|
||||
|
||||
|
||||
def connect(
|
||||
@@ -35,6 +36,7 @@ def connect(
|
||||
host_override: Optional[str] = None,
|
||||
read_consistency_interval: Optional[timedelta] = None,
|
||||
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
|
||||
**kwargs,
|
||||
) -> DBConnection:
|
||||
"""Connect to a LanceDB database.
|
||||
|
||||
@@ -99,7 +101,12 @@ def connect(
|
||||
if isinstance(request_thread_pool, int):
|
||||
request_thread_pool = ThreadPoolExecutor(request_thread_pool)
|
||||
return RemoteDBConnection(
|
||||
uri, api_key, region, host_override, request_thread_pool=request_thread_pool
|
||||
uri,
|
||||
api_key,
|
||||
region,
|
||||
host_override,
|
||||
request_thread_pool=request_thread_pool,
|
||||
**kwargs,
|
||||
)
|
||||
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)
|
||||
|
||||
@@ -182,3 +189,19 @@ async def connect_async(
|
||||
read_consistency_interval_secs,
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"connect",
|
||||
"connect_async",
|
||||
"AsyncConnection",
|
||||
"AsyncTable",
|
||||
"URI",
|
||||
"sanitize_uri",
|
||||
"sentry_log",
|
||||
"vector",
|
||||
"DBConnection",
|
||||
"LanceDBConnection",
|
||||
"RemoteDBConnection",
|
||||
"__version__",
|
||||
]
|
||||
|
||||
@@ -1,7 +1,19 @@
|
||||
from typing import Optional
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
import pyarrow as pa
|
||||
|
||||
class Index:
|
||||
@staticmethod
|
||||
def ivf_pq(
|
||||
distance_type: Optional[str],
|
||||
num_partitions: Optional[int],
|
||||
num_sub_vectors: Optional[int],
|
||||
max_iterations: Optional[int],
|
||||
sample_rate: Optional[int],
|
||||
) -> Index: ...
|
||||
@staticmethod
|
||||
def btree() -> Index: ...
|
||||
|
||||
class Connection(object):
|
||||
async def table_names(
|
||||
self, start_after: Optional[str], limit: Optional[int]
|
||||
@@ -13,10 +25,25 @@ class Connection(object):
|
||||
self, name: str, mode: str, schema: pa.Schema
|
||||
) -> Table: ...
|
||||
|
||||
class Table(object):
|
||||
class Table:
|
||||
def name(self) -> str: ...
|
||||
def __repr__(self) -> str: ...
|
||||
async def schema(self) -> pa.Schema: ...
|
||||
async def add(self, data: pa.RecordBatchReader, mode: str) -> None: ...
|
||||
async def update(self, updates: Dict[str, str], where: Optional[str]) -> None: ...
|
||||
async def count_rows(self, filter: Optional[str]) -> int: ...
|
||||
async def create_index(
|
||||
self, column: str, config: Optional[Index], replace: Optional[bool]
|
||||
): ...
|
||||
async def version(self) -> int: ...
|
||||
async def checkout(self, version): ...
|
||||
async def checkout_latest(self): ...
|
||||
async def restore(self): ...
|
||||
async def list_indices(self) -> List[IndexConfig]: ...
|
||||
|
||||
class IndexConfig:
|
||||
index_type: str
|
||||
columns: List[str]
|
||||
|
||||
async def connect(
|
||||
uri: str,
|
||||
|
||||
@@ -529,7 +529,7 @@ class AsyncConnection(object):
|
||||
on_bad_vectors: Optional[str] = None,
|
||||
fill_value: Optional[float] = None,
|
||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||
) -> Table:
|
||||
) -> AsyncTable:
|
||||
"""Create a [Table][lancedb.table.Table] in the database.
|
||||
|
||||
Parameters
|
||||
|
||||
@@ -31,7 +31,7 @@ class ImageBindEmbeddings(EmbeddingFunction):
|
||||
six different modalities: images, text, audio, depth, thermal, and IMU data
|
||||
|
||||
to download package, run :
|
||||
`pip install imagebind@git+https://github.com/raghavdixit99/ImageBind`
|
||||
`pip install imagebind-packaged==0.1.2`
|
||||
"""
|
||||
|
||||
name: str = "imagebind_huge"
|
||||
|
||||
@@ -113,5 +113,5 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
||||
if self.organization:
|
||||
kwargs["organization"] = self.organization
|
||||
if self.api_key:
|
||||
kwargs["api_key"] = self
|
||||
kwargs["api_key"] = self.api_key
|
||||
return openai.OpenAI(**kwargs)
|
||||
|
||||
163
python/python/lancedb/index.py
Normal file
163
python/python/lancedb/index.py
Normal file
@@ -0,0 +1,163 @@
|
||||
from typing import Optional
|
||||
|
||||
from ._lancedb import (
|
||||
Index as LanceDbIndex,
|
||||
)
|
||||
from ._lancedb import (
|
||||
IndexConfig,
|
||||
)
|
||||
|
||||
|
||||
class BTree(object):
|
||||
"""Describes a btree index configuration
|
||||
|
||||
A btree index is an index on scalar columns. The index stores a copy of the
|
||||
column in sorted order. A header entry is created for each block of rows
|
||||
(currently the block size is fixed at 4096). These header entries are stored
|
||||
in a separate cacheable structure (a btree). To search for data the header is
|
||||
used to determine which blocks need to be read from disk.
|
||||
|
||||
For example, a btree index in a table with 1Bi rows requires
|
||||
sizeof(Scalar) * 256Ki bytes of memory and will generally need to read
|
||||
sizeof(Scalar) * 4096 bytes to find the correct row ids.
|
||||
|
||||
This index is good for scalar columns with mostly distinct values and does best
|
||||
when the query is highly selective.
|
||||
|
||||
The btree index does not currently have any parameters though parameters such as
|
||||
the block size may be added in the future.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._inner = LanceDbIndex.btree()
|
||||
|
||||
|
||||
class IvfPq(object):
|
||||
"""Describes an IVF PQ Index
|
||||
|
||||
This index stores a compressed (quantized) copy of every vector. These vectors
|
||||
are grouped into partitions of similar vectors. Each partition keeps track of
|
||||
a centroid which is the average value of all vectors in the group.
|
||||
|
||||
During a query the centroids are compared with the query vector to find the
|
||||
closest partitions. The compressed vectors in these partitions are then
|
||||
searched to find the closest vectors.
|
||||
|
||||
The compression scheme is called product quantization. Each vector is divide
|
||||
into subvectors and then each subvector is quantized into a small number of
|
||||
bits. the parameters `num_bits` and `num_subvectors` control this process,
|
||||
providing a tradeoff between index size (and thus search speed) and index
|
||||
accuracy.
|
||||
|
||||
The partitioning process is called IVF and the `num_partitions` parameter
|
||||
controls how many groups to create.
|
||||
|
||||
Note that training an IVF PQ index on a large dataset is a slow operation and
|
||||
currently is also a memory intensive operation.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
distance_type: Optional[str] = None,
|
||||
num_partitions: Optional[int] = None,
|
||||
num_sub_vectors: Optional[int] = None,
|
||||
max_iterations: Optional[int] = None,
|
||||
sample_rate: Optional[int] = None,
|
||||
):
|
||||
"""
|
||||
Create an IVF PQ index config
|
||||
|
||||
Parameters
|
||||
----------
|
||||
distance_type: str, default "L2"
|
||||
The distance metric used to train the index
|
||||
|
||||
This is used when training the index to calculate the IVF partitions
|
||||
(vectors are grouped in partitions with similar vectors according to this
|
||||
distance type) and to calculate a subvector's code during quantization.
|
||||
|
||||
The distance type used to train an index MUST match the distance type used
|
||||
to search the index. Failure to do so will yield inaccurate results.
|
||||
|
||||
The following distance types are available:
|
||||
|
||||
"l2" - Euclidean distance. This is a very common distance metric that
|
||||
accounts for both magnitude and direction when determining the distance
|
||||
between vectors. L2 distance has a range of [0, ∞).
|
||||
|
||||
"cosine" - Cosine distance. Cosine distance is a distance metric
|
||||
calculated from the cosine similarity between two vectors. Cosine
|
||||
similarity is a measure of similarity between two non-zero vectors of an
|
||||
inner product space. It is defined to equal the cosine of the angle
|
||||
between them. Unlike L2, the cosine distance is not affected by the
|
||||
magnitude of the vectors. Cosine distance has a range of [0, 2].
|
||||
|
||||
Note: the cosine distance is undefined when one (or both) of the vectors
|
||||
are all zeros (there is no direction). These vectors are invalid and may
|
||||
never be returned from a vector search.
|
||||
|
||||
"dot" - Dot product. Dot distance is the dot product of two vectors. Dot
|
||||
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
|
||||
L2 norm is 1), then dot distance is equivalent to the cosine distance.
|
||||
num_partitions: int, default sqrt(num_rows)
|
||||
The number of IVF partitions to create.
|
||||
|
||||
This value should generally scale with the number of rows in the dataset.
|
||||
By default the number of partitions is the square root of the number of
|
||||
rows.
|
||||
|
||||
If this value is too large then the first part of the search (picking the
|
||||
right partition) will be slow. If this value is too small then the second
|
||||
part of the search (searching within a partition) will be slow.
|
||||
num_sub_vectors: int, default is vector dimension / 16
|
||||
Number of sub-vectors of PQ.
|
||||
|
||||
This value controls how much the vector is compressed during the
|
||||
quantization step. The more sub vectors there are the less the vector is
|
||||
compressed. The default is the dimension of the vector divided by 16. If
|
||||
the dimension is not evenly divisible by 16 we use the dimension divded by
|
||||
8.
|
||||
|
||||
The above two cases are highly preferred. Having 8 or 16 values per
|
||||
subvector allows us to use efficient SIMD instructions.
|
||||
|
||||
If the dimension is not visible by 8 then we use 1 subvector. This is not
|
||||
ideal and will likely result in poor performance.
|
||||
max_iterations: int, default 50
|
||||
Max iteration to train kmeans.
|
||||
|
||||
When training an IVF PQ index we use kmeans to calculate the partitions.
|
||||
This parameter controls how many iterations of kmeans to run.
|
||||
|
||||
Increasing this might improve the quality of the index but in most cases
|
||||
these extra iterations have diminishing returns.
|
||||
|
||||
The default value is 50.
|
||||
sample_rate: int, default 256
|
||||
The rate used to calculate the number of training vectors for kmeans.
|
||||
|
||||
When an IVF PQ index is trained, we need to calculate partitions. These
|
||||
are groups of vectors that are similar to each other. To do this we use an
|
||||
algorithm called kmeans.
|
||||
|
||||
Running kmeans on a large dataset can be slow. To speed this up we run
|
||||
kmeans on a random sample of the data. This parameter controls the size of
|
||||
the sample. The total number of vectors used to train the index is
|
||||
`sample_rate * num_partitions`.
|
||||
|
||||
Increasing this value might improve the quality of the index but in most
|
||||
cases the default should be sufficient.
|
||||
|
||||
The default value is 256.
|
||||
"""
|
||||
self._inner = LanceDbIndex.ivf_pq(
|
||||
distance_type=distance_type,
|
||||
num_partitions=num_partitions,
|
||||
num_sub_vectors=num_sub_vectors,
|
||||
max_iterations=max_iterations,
|
||||
sample_rate=sample_rate,
|
||||
)
|
||||
|
||||
|
||||
__all__ = ["BTree", "IvfPq", "IndexConfig"]
|
||||
@@ -58,6 +58,9 @@ class RestfulLanceDBClient:
|
||||
|
||||
closed: bool = attrs.field(default=False, init=False)
|
||||
|
||||
connection_timeout: float = attrs.field(default=120.0, kw_only=True)
|
||||
read_timeout: float = attrs.field(default=300.0, kw_only=True)
|
||||
|
||||
@functools.cached_property
|
||||
def session(self) -> requests.Session:
|
||||
sess = requests.Session()
|
||||
@@ -117,7 +120,7 @@ class RestfulLanceDBClient:
|
||||
urljoin(self.url, uri),
|
||||
params=params,
|
||||
headers=self.headers,
|
||||
timeout=(120.0, 300.0),
|
||||
timeout=(self.connection_timeout, self.read_timeout),
|
||||
) as resp:
|
||||
self._check_status(resp)
|
||||
return resp.json()
|
||||
@@ -159,7 +162,7 @@ class RestfulLanceDBClient:
|
||||
urljoin(self.url, uri),
|
||||
headers=headers,
|
||||
params=params,
|
||||
timeout=(120.0, 300.0),
|
||||
timeout=(self.connection_timeout, self.read_timeout),
|
||||
**req_kwargs,
|
||||
) as resp:
|
||||
self._check_status(resp)
|
||||
|
||||
@@ -41,6 +41,8 @@ class RemoteDBConnection(DBConnection):
|
||||
region: str,
|
||||
host_override: Optional[str] = None,
|
||||
request_thread_pool: Optional[ThreadPoolExecutor] = None,
|
||||
connection_timeout: float = 120.0,
|
||||
read_timeout: float = 300.0,
|
||||
):
|
||||
"""Connect to a remote LanceDB database."""
|
||||
parsed = urlparse(db_url)
|
||||
@@ -49,7 +51,12 @@ class RemoteDBConnection(DBConnection):
|
||||
self.db_name = parsed.netloc
|
||||
self.api_key = api_key
|
||||
self._client = RestfulLanceDBClient(
|
||||
self.db_name, region, api_key, host_override
|
||||
self.db_name,
|
||||
region,
|
||||
api_key,
|
||||
host_override,
|
||||
connection_timeout=connection_timeout,
|
||||
read_timeout=read_timeout,
|
||||
)
|
||||
self._request_thread_pool = request_thread_pool
|
||||
|
||||
|
||||
@@ -70,10 +70,12 @@ class RemoteTable(Table):
|
||||
"""List all the indices on the table"""
|
||||
resp = self._conn._client.post(f"/v1/table/{self._name}/index/list/")
|
||||
return resp
|
||||
|
||||
|
||||
def index_stats(self, index_uuid: str):
|
||||
"""List all the indices on the table"""
|
||||
resp = self._conn._client.post(f"/v1/table/{self._name}/index/{index_uuid}/stats/")
|
||||
resp = self._conn._client.post(
|
||||
f"/v1/table/{self._name}/index/{index_uuid}/stats/"
|
||||
)
|
||||
return resp
|
||||
|
||||
def create_scalar_index(
|
||||
|
||||
@@ -60,6 +60,7 @@ if TYPE_CHECKING:
|
||||
|
||||
from ._lancedb import Table as LanceDBTable
|
||||
from .db import LanceDBConnection
|
||||
from .index import BTree, IndexConfig, IvfPq
|
||||
|
||||
|
||||
pd = safe_import_pandas()
|
||||
@@ -117,7 +118,8 @@ def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schem
|
||||
functions = EmbeddingFunctionRegistry.get_instance().parse_functions(metadata)
|
||||
for vector_column, conf in functions.items():
|
||||
func = conf.function
|
||||
if vector_column not in data.column_names:
|
||||
no_vector_column = vector_column not in data.column_names
|
||||
if no_vector_column or pc.all(pc.is_null(data[vector_column])).as_py():
|
||||
col_data = func.compute_source_embeddings_with_retry(
|
||||
data[conf.source_column]
|
||||
)
|
||||
@@ -125,9 +127,16 @@ def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schem
|
||||
dtype = schema.field(vector_column).type
|
||||
else:
|
||||
dtype = pa.list_(pa.float32(), len(col_data[0]))
|
||||
data = data.append_column(
|
||||
pa.field(vector_column, type=dtype), pa.array(col_data, type=dtype)
|
||||
)
|
||||
if no_vector_column:
|
||||
data = data.append_column(
|
||||
pa.field(vector_column, type=dtype), pa.array(col_data, type=dtype)
|
||||
)
|
||||
else:
|
||||
data = data.set_column(
|
||||
data.column_names.index(vector_column),
|
||||
pa.field(vector_column, type=dtype),
|
||||
pa.array(col_data, type=dtype),
|
||||
)
|
||||
return data
|
||||
|
||||
|
||||
@@ -1917,112 +1926,48 @@ class AsyncTable:
|
||||
raise NotImplementedError
|
||||
|
||||
async def create_index(
|
||||
self,
|
||||
metric="L2",
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
vector_column_name: str = VECTOR_COLUMN_NAME,
|
||||
replace: bool = True,
|
||||
accelerator: Optional[str] = None,
|
||||
index_cache_size: Optional[int] = None,
|
||||
):
|
||||
"""Create an index on the table.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
metric: str, default "L2"
|
||||
The distance metric to use when creating the index.
|
||||
Valid values are "L2", "cosine", or "dot".
|
||||
L2 is euclidean distance.
|
||||
num_partitions: int, default 256
|
||||
The number of IVF partitions to use when creating the index.
|
||||
Default is 256.
|
||||
num_sub_vectors: int, default 96
|
||||
The number of PQ sub-vectors to use when creating the index.
|
||||
Default is 96.
|
||||
vector_column_name: str, default "vector"
|
||||
The vector column name to create the index.
|
||||
replace: bool, default True
|
||||
- If True, replace the existing index if it exists.
|
||||
|
||||
- If False, raise an error if duplicate index exists.
|
||||
accelerator: str, default None
|
||||
If set, use the given accelerator to create the index.
|
||||
Only support "cuda" for now.
|
||||
index_cache_size : int, optional
|
||||
The size of the index cache in number of entries. Default value is 256.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def create_scalar_index(
|
||||
self,
|
||||
column: str,
|
||||
*,
|
||||
replace: bool = True,
|
||||
replace: Optional[bool] = None,
|
||||
config: Optional[Union[IvfPq, BTree]] = None,
|
||||
):
|
||||
"""Create a scalar index on a column.
|
||||
"""Create an index to speed up queries
|
||||
|
||||
Scalar indices, like vector indices, can be used to speed up scans. A scalar
|
||||
index can speed up scans that contain filter expressions on the indexed column.
|
||||
For example, the following scan will be faster if the column ``my_col`` has
|
||||
a scalar index:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("/data/lance")
|
||||
img_table = db.open_table("images")
|
||||
my_df = img_table.search().where("my_col = 7", prefilter=True).to_pandas()
|
||||
|
||||
Scalar indices can also speed up scans containing a vector search and a
|
||||
prefilter:
|
||||
|
||||
.. code-block::python
|
||||
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("/data/lance")
|
||||
img_table = db.open_table("images")
|
||||
img_table.search([1, 2, 3, 4], vector_column_name="vector")
|
||||
.where("my_col != 7", prefilter=True)
|
||||
.to_pandas()
|
||||
|
||||
Scalar indices can only speed up scans for basic filters using
|
||||
equality, comparison, range (e.g. ``my_col BETWEEN 0 AND 100``), and set
|
||||
membership (e.g. `my_col IN (0, 1, 2)`)
|
||||
|
||||
Scalar indices can be used if the filter contains multiple indexed columns and
|
||||
the filter criteria are AND'd or OR'd together
|
||||
(e.g. ``my_col < 0 AND other_col> 100``)
|
||||
|
||||
Scalar indices may be used if the filter contains non-indexed columns but,
|
||||
depending on the structure of the filter, they may not be usable. For example,
|
||||
if the column ``not_indexed`` does not have a scalar index then the filter
|
||||
``my_col = 0 OR not_indexed = 1`` will not be able to use any scalar index on
|
||||
``my_col``.
|
||||
|
||||
**Experimental API**
|
||||
Indices can be created on vector columns or scalar columns.
|
||||
Indices on vector columns will speed up vector searches.
|
||||
Indices on scalar columns will speed up filtering (in both
|
||||
vector and non-vector searches)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
column : str
|
||||
The column to be indexed. Must be a boolean, integer, float,
|
||||
or string column.
|
||||
replace : bool, default True
|
||||
Replace the existing index if it exists.
|
||||
index: Index
|
||||
The index to create.
|
||||
|
||||
Examples
|
||||
--------
|
||||
LanceDb supports multiple types of indices. See the static methods on
|
||||
the Index class for more details.
|
||||
column: str, default None
|
||||
The column to index.
|
||||
|
||||
.. code-block:: python
|
||||
When building a scalar index this must be set.
|
||||
|
||||
import lance
|
||||
When building a vector index, this is optional. The default will look
|
||||
for any columns of type fixed-size-list with floating point values. If
|
||||
there is only one column of this type then it will be used. Otherwise
|
||||
an error will be returned.
|
||||
replace: bool, default True
|
||||
Whether to replace the existing index
|
||||
|
||||
dataset = lance.dataset("./images.lance")
|
||||
dataset.create_scalar_index("category")
|
||||
If this is false, and another index already exists on the same columns
|
||||
and the same name, then an error will be returned. This is true even if
|
||||
that index is out of date.
|
||||
|
||||
The default is True
|
||||
"""
|
||||
raise NotImplementedError
|
||||
index = None
|
||||
if config is not None:
|
||||
index = config._inner
|
||||
await self._inner.create_index(column, index=index, replace=replace)
|
||||
|
||||
async def add(
|
||||
self,
|
||||
@@ -2066,6 +2011,8 @@ class AsyncTable:
|
||||
on_bad_vectors=on_bad_vectors,
|
||||
fill_value=fill_value,
|
||||
)
|
||||
if isinstance(data, pa.Table):
|
||||
data = pa.RecordBatchReader.from_batches(data.schema, data.to_batches())
|
||||
await self._inner.add(data, mode)
|
||||
register_event("add")
|
||||
|
||||
@@ -2275,58 +2222,57 @@ class AsyncTable:
|
||||
|
||||
async def update(
|
||||
self,
|
||||
where: Optional[str] = None,
|
||||
values: Optional[dict] = None,
|
||||
updates: Optional[Dict[str, Any]] = None,
|
||||
*,
|
||||
values_sql: Optional[Dict[str, str]] = None,
|
||||
where: Optional[str] = None,
|
||||
updates_sql: Optional[Dict[str, str]] = None,
|
||||
):
|
||||
"""
|
||||
This can be used to update zero to all rows depending on how many
|
||||
rows match the where clause. If no where clause is provided, then
|
||||
all rows will be updated.
|
||||
This can be used to update zero to all rows in the table.
|
||||
|
||||
Either `values` or `values_sql` must be provided. You cannot provide
|
||||
both.
|
||||
If a filter is provided with `where` then only rows matching the
|
||||
filter will be updated. Otherwise all rows will be updated.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
updates: dict, optional
|
||||
The updates to apply. The keys should be the name of the column to
|
||||
update. The values should be the new values to assign. This is
|
||||
required unless updates_sql is supplied.
|
||||
where: str, optional
|
||||
The SQL where clause to use when updating rows. For example, 'x = 2'
|
||||
or 'x IN (1, 2, 3)'. The filter must not be empty, or it will error.
|
||||
values: dict, optional
|
||||
The values to update. The keys are the column names and the values
|
||||
are the values to set.
|
||||
values_sql: dict, optional
|
||||
The values to update, expressed as SQL expression strings. These can
|
||||
reference existing columns. For example, {"x": "x + 1"} will increment
|
||||
the x column by 1.
|
||||
An SQL filter that controls which rows are updated. For example, 'x = 2'
|
||||
or 'x IN (1, 2, 3)'. Only rows that satisfy this filter will be udpated.
|
||||
updates_sql: dict, optional
|
||||
The updates to apply, expressed as SQL expression strings. The keys should
|
||||
be column names. The values should be SQL expressions. These can be SQL
|
||||
literals (e.g. "7" or "'foo'") or they can be expressions based on the
|
||||
previous value of the row (e.g. "x + 1" to increment the x column by 1)
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import asyncio
|
||||
>>> import lancedb
|
||||
>>> import pandas as pd
|
||||
>>> data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||
>>> db = lancedb.connect("./.lancedb")
|
||||
>>> table = db.create_table("my_table", data)
|
||||
>>> table.to_pandas()
|
||||
x vector
|
||||
0 1 [1.0, 2.0]
|
||||
1 2 [3.0, 4.0]
|
||||
2 3 [5.0, 6.0]
|
||||
>>> table.update(where="x = 2", values={"vector": [10, 10]})
|
||||
>>> table.to_pandas()
|
||||
x vector
|
||||
0 1 [1.0, 2.0]
|
||||
1 3 [5.0, 6.0]
|
||||
2 2 [10.0, 10.0]
|
||||
>>> table.update(values_sql={"x": "x + 1"})
|
||||
>>> table.to_pandas()
|
||||
x vector
|
||||
0 2 [1.0, 2.0]
|
||||
1 4 [5.0, 6.0]
|
||||
2 3 [10.0, 10.0]
|
||||
>>> async def demo_update():
|
||||
... data = pd.DataFrame({"x": [1, 2], "vector": [[1, 2], [3, 4]]})
|
||||
... db = await lancedb.connect_async("./.lancedb")
|
||||
... table = await db.create_table("my_table", data)
|
||||
... # x is [1, 2], vector is [[1, 2], [3, 4]]
|
||||
... await table.update({"vector": [10, 10]}, where="x = 2")
|
||||
... # x is [1, 2], vector is [[1, 2], [10, 10]]
|
||||
... await table.update(updates_sql={"x": "x + 1"})
|
||||
... # x is [2, 3], vector is [[1, 2], [10, 10]]
|
||||
>>> asyncio.run(demo_update())
|
||||
"""
|
||||
raise NotImplementedError
|
||||
if updates is not None and updates_sql is not None:
|
||||
raise ValueError("Only one of updates or updates_sql can be provided")
|
||||
if updates is None and updates_sql is None:
|
||||
raise ValueError("Either updates or updates_sql must be provided")
|
||||
|
||||
if updates is not None:
|
||||
updates_sql = {k: value_to_sql(v) for k, v in updates.items()}
|
||||
|
||||
return await self._inner.update(updates_sql, where)
|
||||
|
||||
async def cleanup_old_versions(
|
||||
self,
|
||||
@@ -2423,3 +2369,65 @@ class AsyncTable:
|
||||
The names of the columns to drop.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def version(self) -> int:
|
||||
"""
|
||||
Retrieve the version of the table
|
||||
|
||||
LanceDb supports versioning. Every operation that modifies the table increases
|
||||
version. As long as a version hasn't been deleted you can `[Self::checkout]`
|
||||
that version to view the data at that point. In addition, you can
|
||||
`[Self::restore]` the version to replace the current table with a previous
|
||||
version.
|
||||
"""
|
||||
return await self._inner.version()
|
||||
|
||||
async def checkout(self, version):
|
||||
"""
|
||||
Checks out a specific version of the Table
|
||||
|
||||
Any read operation on the table will now access the data at the checked out
|
||||
version. As a consequence, calling this method will disable any read consistency
|
||||
interval that was previously set.
|
||||
|
||||
This is a read-only operation that turns the table into a sort of "view"
|
||||
or "detached head". Other table instances will not be affected. To make the
|
||||
change permanent you can use the `[Self::restore]` method.
|
||||
|
||||
Any operation that modifies the table will fail while the table is in a checked
|
||||
out state.
|
||||
|
||||
To return the table to a normal state use `[Self::checkout_latest]`
|
||||
"""
|
||||
await self._inner.checkout(version)
|
||||
|
||||
async def checkout_latest(self):
|
||||
"""
|
||||
Ensures the table is pointing at the latest version
|
||||
|
||||
This can be used to manually update a table when the read_consistency_interval
|
||||
is None
|
||||
It can also be used to undo a `[Self::checkout]` operation
|
||||
"""
|
||||
await self._inner.checkout_latest()
|
||||
|
||||
async def restore(self):
|
||||
"""
|
||||
Restore the table to the currently checked out version
|
||||
|
||||
This operation will fail if checkout has not been called previously
|
||||
|
||||
This operation will overwrite the latest version of the table with a
|
||||
previous version. Any changes made since the checked out version will
|
||||
no longer be visible.
|
||||
|
||||
Once the operation concludes the table will no longer be in a checked
|
||||
out state and the read_consistency_interval, if any, will apply.
|
||||
"""
|
||||
await self._inner.restore()
|
||||
|
||||
async def list_indices(self) -> IndexConfig:
|
||||
"""
|
||||
List all indices that have been created with Self::create_index
|
||||
"""
|
||||
return await self._inner.list_indices()
|
||||
|
||||
@@ -26,6 +26,18 @@ import pyarrow as pa
|
||||
import pyarrow.fs as pa_fs
|
||||
|
||||
|
||||
def safe_import_adlfs():
|
||||
try:
|
||||
import adlfs
|
||||
|
||||
return adlfs
|
||||
except ImportError:
|
||||
return None
|
||||
|
||||
|
||||
adlfs = safe_import_adlfs()
|
||||
|
||||
|
||||
def get_uri_scheme(uri: str) -> str:
|
||||
"""
|
||||
Get the scheme of a URI. If the URI does not have a scheme, assume it is a file URI.
|
||||
@@ -92,6 +104,17 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
|
||||
path = get_uri_location(uri)
|
||||
return fs, path
|
||||
|
||||
elif get_uri_scheme(uri) == "az" and adlfs is not None:
|
||||
az_blob_fs = adlfs.AzureBlobFileSystem(
|
||||
account_name=os.environ.get("AZURE_STORAGE_ACCOUNT_NAME"),
|
||||
account_key=os.environ.get("AZURE_STORAGE_ACCOUNT_KEY"),
|
||||
)
|
||||
|
||||
fs = pa_fs.PyFileSystem(pa_fs.FSSpecHandler(az_blob_fs))
|
||||
|
||||
path = get_uri_location(uri)
|
||||
return fs, path
|
||||
|
||||
return pa_fs.FileSystem.from_uri(uri)
|
||||
|
||||
|
||||
|
||||
@@ -69,7 +69,7 @@ class _Events:
|
||||
self.throttled_event_names = ["search_table"]
|
||||
self.throttled_events = set()
|
||||
self.max_events = 5 # max events to store in memory
|
||||
self.rate_limit = 60.0 * 5 # rate limit (seconds)
|
||||
self.rate_limit = 60.0 * 60.0 # rate limit (seconds)
|
||||
self.time = 0.0
|
||||
|
||||
if is_git_dir():
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import sys
|
||||
from typing import List, Union
|
||||
|
||||
import lance
|
||||
import lancedb
|
||||
@@ -23,6 +24,8 @@ from lancedb.embeddings import (
|
||||
EmbeddingFunctionRegistry,
|
||||
with_embeddings,
|
||||
)
|
||||
from lancedb.embeddings.base import TextEmbeddingFunction
|
||||
from lancedb.embeddings.registry import get_registry, register
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
|
||||
@@ -112,3 +115,34 @@ def test_embedding_function_rate_limit(tmp_path):
|
||||
table.add([{"text": "hello world"}])
|
||||
table.add([{"text": "hello world"}])
|
||||
assert len(table) == 2
|
||||
|
||||
|
||||
def test_add_optional_vector(tmp_path):
|
||||
@register("mock-embedding")
|
||||
class MockEmbeddingFunction(TextEmbeddingFunction):
|
||||
def ndims(self):
|
||||
return 128
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Generate the embeddings for the given texts
|
||||
"""
|
||||
return [np.random.randn(self.ndims()).tolist() for _ in range(len(texts))]
|
||||
|
||||
registry = get_registry()
|
||||
model = registry.get("mock-embedding").create()
|
||||
|
||||
class LanceSchema(LanceModel):
|
||||
id: str
|
||||
vector: Vector(model.ndims()) = model.VectorField(default=None)
|
||||
text: str = model.SourceField()
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
tbl = db.create_table("optional_vector", schema=LanceSchema)
|
||||
|
||||
# add works
|
||||
expected = LanceSchema(id="id", text="text")
|
||||
tbl.add([expected])
|
||||
assert not (np.abs(tbl.to_pandas()["vector"][0]) < 1e-6).all()
|
||||
|
||||
69
python/python/tests/test_index.py
Normal file
69
python/python/tests/test_index.py
Normal file
@@ -0,0 +1,69 @@
|
||||
from datetime import timedelta
|
||||
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from lancedb import AsyncConnection, AsyncTable, connect_async
|
||||
from lancedb.index import BTree, IvfPq
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def db_async(tmp_path) -> AsyncConnection:
|
||||
return await connect_async(tmp_path, read_consistency_interval=timedelta(seconds=0))
|
||||
|
||||
|
||||
def sample_fixed_size_list_array(nrows, dim):
|
||||
vector_data = pa.array([float(i) for i in range(dim * nrows)], pa.float32())
|
||||
return pa.FixedSizeListArray.from_arrays(vector_data, dim)
|
||||
|
||||
|
||||
DIM = 8
|
||||
NROWS = 256
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def some_table(db_async):
|
||||
data = pa.Table.from_pydict(
|
||||
{
|
||||
"id": list(range(256)),
|
||||
"vector": sample_fixed_size_list_array(NROWS, DIM),
|
||||
}
|
||||
)
|
||||
return await db_async.create_table(
|
||||
"some_table",
|
||||
data,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_scalar_index(some_table: AsyncTable):
|
||||
# Can create
|
||||
await some_table.create_index("id")
|
||||
# Can recreate if replace=True
|
||||
await some_table.create_index("id", replace=True)
|
||||
indices = await some_table.list_indices()
|
||||
assert len(indices) == 1
|
||||
assert indices[0].index_type == "BTree"
|
||||
assert indices[0].columns == ["id"]
|
||||
# Can't recreate if replace=False
|
||||
with pytest.raises(RuntimeError, match="already exists"):
|
||||
await some_table.create_index("id", replace=False)
|
||||
# can also specify index type
|
||||
await some_table.create_index("id", config=BTree())
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_vector_index(some_table: AsyncTable):
|
||||
# Can create
|
||||
await some_table.create_index("vector")
|
||||
# Can recreate if replace=True
|
||||
await some_table.create_index("vector", replace=True)
|
||||
# Can't recreate if replace=False
|
||||
with pytest.raises(RuntimeError, match="already exists"):
|
||||
await some_table.create_index("vector", replace=False)
|
||||
# Can also specify index type
|
||||
await some_table.create_index("vector", config=IvfPq(num_partitions=100))
|
||||
indices = await some_table.list_indices()
|
||||
assert len(indices) == 1
|
||||
assert indices[0].index_type == "IvfPq"
|
||||
assert indices[0].columns == ["vector"]
|
||||
@@ -16,16 +16,35 @@ import os
|
||||
import lancedb
|
||||
import pytest
|
||||
|
||||
# AWS:
|
||||
# You need to setup AWS credentials an a base path to run this test. Example
|
||||
# AWS_PROFILE=default TEST_S3_BASE_URL=s3://my_bucket/dataset pytest tests/test_io.py
|
||||
#
|
||||
# Azure:
|
||||
# You need to setup Azure credentials an a base path to run this test. Example
|
||||
# export AZURE_STORAGE_ACCOUNT_NAME="<account>"
|
||||
# export AZURE_STORAGE_ACCOUNT_KEY="<key>"
|
||||
# export REMOTE_BASE_URL=az://my_blob/dataset
|
||||
# pytest tests/test_io.py
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True, scope="module")
|
||||
def setup():
|
||||
yield
|
||||
|
||||
if remote_url := os.environ.get("REMOTE_BASE_URL"):
|
||||
db = lancedb.connect(remote_url)
|
||||
|
||||
for table in db.table_names():
|
||||
db.drop_table(table)
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
(os.environ.get("TEST_S3_BASE_URL") is None),
|
||||
reason="please setup s3 base url",
|
||||
(os.environ.get("REMOTE_BASE_URL") is None),
|
||||
reason="please setup remote base url",
|
||||
)
|
||||
def test_s3_io():
|
||||
db = lancedb.connect(os.environ.get("TEST_S3_BASE_URL"))
|
||||
def test_remote_io():
|
||||
db = lancedb.connect(os.environ.get("REMOTE_BASE_URL"))
|
||||
assert db.table_names() == []
|
||||
|
||||
table = db.create_table(
|
||||
|
||||
@@ -85,6 +85,23 @@ async def test_close(db_async: AsyncConnection):
|
||||
assert str(table) == "ClosedTable(some_table)"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_async(db_async: AsyncConnection):
|
||||
table = await db_async.create_table("some_table", data=[{"id": 0}])
|
||||
assert await table.count_rows("id == 0") == 1
|
||||
assert await table.count_rows("id == 7") == 0
|
||||
await table.update({"id": 7})
|
||||
assert await table.count_rows("id == 7") == 1
|
||||
assert await table.count_rows("id == 0") == 0
|
||||
await table.add([{"id": 2}])
|
||||
await table.update(where="id % 2 == 0", updates_sql={"id": "5"})
|
||||
assert await table.count_rows("id == 7") == 1
|
||||
assert await table.count_rows("id == 2") == 0
|
||||
assert await table.count_rows("id == 5") == 1
|
||||
await table.update({"id": 10}, where="id == 5")
|
||||
assert await table.count_rows("id == 10") == 1
|
||||
|
||||
|
||||
def test_create_table(db):
|
||||
schema = pa.schema(
|
||||
[
|
||||
@@ -974,3 +991,37 @@ def test_drop_columns(tmp_path):
|
||||
table = LanceTable.create(db, "my_table", data=data)
|
||||
table.drop_columns(["category"])
|
||||
assert table.to_arrow().column_names == ["id"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_time_travel(db_async: AsyncConnection):
|
||||
# Setup
|
||||
table = await db_async.create_table("some_table", data=[{"id": 0}])
|
||||
version = await table.version()
|
||||
await table.add([{"id": 1}])
|
||||
assert await table.count_rows() == 2
|
||||
# Make sure we can rewind
|
||||
await table.checkout(version)
|
||||
assert await table.count_rows() == 1
|
||||
# Can't add data in time travel mode
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="table cannot be modified when a specific version is checked out",
|
||||
):
|
||||
await table.add([{"id": 2}])
|
||||
# Can go back to normal mode
|
||||
await table.checkout_latest()
|
||||
assert await table.count_rows() == 2
|
||||
# Should be able to add data again
|
||||
await table.add([{"id": 3}])
|
||||
assert await table.count_rows() == 3
|
||||
# Now checkout and restore
|
||||
await table.checkout(version)
|
||||
await table.restore()
|
||||
assert await table.count_rows() == 1
|
||||
# Should be able to add data
|
||||
await table.add([{"id": 4}])
|
||||
assert await table.count_rows() == 2
|
||||
# Can't use restore if not checked out
|
||||
with pytest.raises(ValueError, match="checkout before running restore"):
|
||||
await table.restore()
|
||||
|
||||
109
python/src/index.rs
Normal file
109
python/src/index.rs
Normal file
@@ -0,0 +1,109 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::sync::Mutex;
|
||||
|
||||
use lancedb::{
|
||||
index::{scalar::BTreeIndexBuilder, vector::IvfPqIndexBuilder, Index as LanceDbIndex},
|
||||
DistanceType,
|
||||
};
|
||||
use pyo3::{
|
||||
exceptions::{PyRuntimeError, PyValueError},
|
||||
pyclass, pymethods, PyResult,
|
||||
};
|
||||
|
||||
#[pyclass]
|
||||
pub struct Index {
|
||||
inner: Mutex<Option<LanceDbIndex>>,
|
||||
}
|
||||
|
||||
impl Index {
|
||||
pub fn consume(&self) -> PyResult<LanceDbIndex> {
|
||||
self.inner
|
||||
.lock()
|
||||
.unwrap()
|
||||
.take()
|
||||
.ok_or_else(|| PyRuntimeError::new_err("cannot use an Index more than once"))
|
||||
}
|
||||
}
|
||||
|
||||
#[pymethods]
|
||||
impl Index {
|
||||
#[staticmethod]
|
||||
pub fn ivf_pq(
|
||||
distance_type: Option<String>,
|
||||
num_partitions: Option<u32>,
|
||||
num_sub_vectors: Option<u32>,
|
||||
max_iterations: Option<u32>,
|
||||
sample_rate: Option<u32>,
|
||||
) -> PyResult<Self> {
|
||||
let mut ivf_pq_builder = IvfPqIndexBuilder::default();
|
||||
if let Some(distance_type) = distance_type {
|
||||
let distance_type = match distance_type.as_str() {
|
||||
"l2" => Ok(DistanceType::L2),
|
||||
"cosine" => Ok(DistanceType::Cosine),
|
||||
"dot" => Ok(DistanceType::Dot),
|
||||
_ => Err(PyValueError::new_err(format!(
|
||||
"Invalid distance type '{}'. Must be one of l2, cosine, or dot",
|
||||
distance_type
|
||||
))),
|
||||
}?;
|
||||
ivf_pq_builder = ivf_pq_builder.distance_type(distance_type);
|
||||
}
|
||||
if let Some(num_partitions) = num_partitions {
|
||||
ivf_pq_builder = ivf_pq_builder.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(num_sub_vectors) = num_sub_vectors {
|
||||
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
|
||||
}
|
||||
if let Some(max_iterations) = max_iterations {
|
||||
ivf_pq_builder = ivf_pq_builder.max_iterations(max_iterations);
|
||||
}
|
||||
if let Some(sample_rate) = sample_rate {
|
||||
ivf_pq_builder = ivf_pq_builder.sample_rate(sample_rate);
|
||||
}
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::IvfPq(ivf_pq_builder))),
|
||||
})
|
||||
}
|
||||
|
||||
#[staticmethod]
|
||||
pub fn btree() -> PyResult<Self> {
|
||||
Ok(Self {
|
||||
inner: Mutex::new(Some(LanceDbIndex::BTree(BTreeIndexBuilder::default()))),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[pyclass(get_all)]
|
||||
/// A description of an index currently configured on a column
|
||||
pub struct IndexConfig {
|
||||
/// The type of the index
|
||||
pub index_type: String,
|
||||
/// The columns in the index
|
||||
///
|
||||
/// Currently this is always a list of size 1. In the future there may
|
||||
/// be more columns to represent composite indices.
|
||||
pub columns: Vec<String>,
|
||||
}
|
||||
|
||||
impl From<lancedb::index::IndexConfig> for IndexConfig {
|
||||
fn from(value: lancedb::index::IndexConfig) -> Self {
|
||||
let index_type = format!("{:?}", value.index_type);
|
||||
Self {
|
||||
index_type,
|
||||
columns: value.columns,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -14,11 +14,15 @@
|
||||
|
||||
use connection::{connect, Connection};
|
||||
use env_logger::Env;
|
||||
use index::{Index, IndexConfig};
|
||||
use pyo3::{pymodule, types::PyModule, wrap_pyfunction, PyResult, Python};
|
||||
use table::Table;
|
||||
|
||||
pub mod connection;
|
||||
pub mod error;
|
||||
pub mod index;
|
||||
pub mod table;
|
||||
pub mod util;
|
||||
|
||||
#[pymodule]
|
||||
pub fn _lancedb(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||
@@ -27,6 +31,9 @@ pub fn _lancedb(_py: Python, m: &PyModule) -> PyResult<()> {
|
||||
.write_style("LANCEDB_LOG_STYLE");
|
||||
env_logger::init_from_env(env);
|
||||
m.add_class::<Connection>()?;
|
||||
m.add_class::<Table>()?;
|
||||
m.add_class::<Index>()?;
|
||||
m.add_class::<IndexConfig>()?;
|
||||
m.add_function(wrap_pyfunction!(connect, m)?)?;
|
||||
m.add("__version__", env!("CARGO_PKG_VERSION"))?;
|
||||
Ok(())
|
||||
|
||||
@@ -5,11 +5,16 @@ use arrow::{
|
||||
use lancedb::table::{AddDataMode, Table as LanceDbTable};
|
||||
use pyo3::{
|
||||
exceptions::{PyRuntimeError, PyValueError},
|
||||
pyclass, pymethods, PyAny, PyRef, PyResult, Python,
|
||||
pyclass, pymethods,
|
||||
types::{PyDict, PyString},
|
||||
PyAny, PyRef, PyResult, Python,
|
||||
};
|
||||
use pyo3_asyncio::tokio::future_into_py;
|
||||
|
||||
use crate::error::PythonErrorExt;
|
||||
use crate::{
|
||||
error::PythonErrorExt,
|
||||
index::{Index, IndexConfig},
|
||||
};
|
||||
|
||||
#[pyclass]
|
||||
pub struct Table {
|
||||
@@ -74,6 +79,28 @@ impl Table {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn update<'a>(
|
||||
self_: PyRef<'a, Self>,
|
||||
updates: &PyDict,
|
||||
r#where: Option<String>,
|
||||
) -> PyResult<&'a PyAny> {
|
||||
let mut op = self_.inner_ref()?.update();
|
||||
if let Some(only_if) = r#where {
|
||||
op = op.only_if(only_if);
|
||||
}
|
||||
for (column_name, value) in updates.into_iter() {
|
||||
let column_name: &PyString = column_name.downcast()?;
|
||||
let column_name = column_name.to_str()?.to_string();
|
||||
let value: &PyString = value.downcast()?;
|
||||
let value = value.to_str()?.to_string();
|
||||
op = op.column(column_name, value);
|
||||
}
|
||||
future_into_py(self_.py(), async move {
|
||||
op.execute().await.infer_error()?;
|
||||
Ok(())
|
||||
})
|
||||
}
|
||||
|
||||
pub fn count_rows(self_: PyRef<'_, Self>, filter: Option<String>) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
@@ -81,10 +108,75 @@ impl Table {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn create_index<'a>(
|
||||
self_: PyRef<'a, Self>,
|
||||
column: String,
|
||||
index: Option<&Index>,
|
||||
replace: Option<bool>,
|
||||
) -> PyResult<&'a PyAny> {
|
||||
let index = if let Some(index) = index {
|
||||
index.consume()?
|
||||
} else {
|
||||
lancedb::index::Index::Auto
|
||||
};
|
||||
let mut op = self_.inner_ref()?.create_index(&[column], index);
|
||||
if let Some(replace) = replace {
|
||||
op = op.replace(replace);
|
||||
}
|
||||
|
||||
future_into_py(self_.py(), async move {
|
||||
op.execute().await.infer_error()?;
|
||||
Ok(())
|
||||
})
|
||||
}
|
||||
|
||||
pub fn list_indices(self_: PyRef<'_, Self>) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
Ok(inner
|
||||
.list_indices()
|
||||
.await
|
||||
.infer_error()?
|
||||
.into_iter()
|
||||
.map(IndexConfig::from)
|
||||
.collect::<Vec<_>>())
|
||||
})
|
||||
}
|
||||
|
||||
pub fn __repr__(&self) -> String {
|
||||
match &self.inner {
|
||||
None => format!("ClosedTable({})", self.name),
|
||||
Some(inner) => inner.to_string(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn version(self_: PyRef<'_, Self>) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(
|
||||
self_.py(),
|
||||
async move { inner.version().await.infer_error() },
|
||||
)
|
||||
}
|
||||
|
||||
pub fn checkout(self_: PyRef<'_, Self>, version: u64) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
inner.checkout(version).await.infer_error()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn checkout_latest(self_: PyRef<'_, Self>) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
inner.checkout_latest().await.infer_error()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn restore(self_: PyRef<'_, Self>) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(
|
||||
self_.py(),
|
||||
async move { inner.restore().await.infer_error() },
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
35
python/src/util.rs
Normal file
35
python/src/util.rs
Normal file
@@ -0,0 +1,35 @@
|
||||
use std::sync::Mutex;
|
||||
|
||||
use pyo3::{exceptions::PyRuntimeError, PyResult};
|
||||
|
||||
/// A wrapper around a rust builder
|
||||
///
|
||||
/// Rust builders are often implemented so that the builder methods
|
||||
/// consume the builder and return a new one. This is not compatible
|
||||
/// with the pyo3, which, being garbage collected, cannot easily obtain
|
||||
/// ownership of an object.
|
||||
///
|
||||
/// This wrapper converts the compile-time safety of rust into runtime
|
||||
/// errors if any attempt to use the builder happens after it is consumed.
|
||||
pub struct BuilderWrapper<T> {
|
||||
name: String,
|
||||
inner: Mutex<Option<T>>,
|
||||
}
|
||||
|
||||
impl<T> BuilderWrapper<T> {
|
||||
pub fn new(name: impl AsRef<str>, inner: T) -> Self {
|
||||
Self {
|
||||
name: name.as_ref().to_string(),
|
||||
inner: Mutex::new(Some(inner)),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn consume<O>(&self, mod_fn: impl FnOnce(T) -> O) -> PyResult<O> {
|
||||
let mut inner = self.inner.lock().unwrap();
|
||||
let inner_builder = inner.take().ok_or_else(|| {
|
||||
PyRuntimeError::new_err(format!("{} has already been consumed", self.name))
|
||||
})?;
|
||||
let result = mod_fn(inner_builder);
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-node"
|
||||
version = "0.4.12"
|
||||
version = "0.4.13"
|
||||
description = "Serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
edition.workspace = true
|
||||
|
||||
@@ -12,6 +12,7 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use lancedb::index::{scalar::BTreeIndexBuilder, Index};
|
||||
use neon::{
|
||||
context::{Context, FunctionContext},
|
||||
result::JsResult,
|
||||
@@ -33,9 +34,9 @@ pub fn table_create_scalar_index(mut cx: FunctionContext) -> JsResult<JsPromise>
|
||||
|
||||
rt.spawn(async move {
|
||||
let idx_result = table
|
||||
.create_index(&[&column])
|
||||
.create_index(&[column], Index::BTree(BTreeIndexBuilder::default()))
|
||||
.replace(replace)
|
||||
.build()
|
||||
.execute()
|
||||
.await;
|
||||
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
|
||||
@@ -13,12 +13,12 @@
|
||||
// limitations under the License.
|
||||
|
||||
use lance_linalg::distance::MetricType;
|
||||
use lancedb::index::IndexBuilder;
|
||||
use lancedb::index::vector::IvfPqIndexBuilder;
|
||||
use lancedb::index::Index;
|
||||
use neon::context::FunctionContext;
|
||||
use neon::prelude::*;
|
||||
use std::convert::TryFrom;
|
||||
|
||||
use crate::error::Error::InvalidIndexType;
|
||||
use crate::error::ResultExt;
|
||||
use crate::neon_ext::js_object_ext::JsObjectExt;
|
||||
use crate::runtime;
|
||||
@@ -39,13 +39,20 @@ pub fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise>
|
||||
.map(|s| s.value(&mut cx))
|
||||
.unwrap_or("vector".to_string()); // Backward compatibility
|
||||
|
||||
let replace = index_params
|
||||
.get_opt::<JsBoolean, _, _>(&mut cx, "replace")?
|
||||
.map(|r| r.value(&mut cx));
|
||||
|
||||
let tbl = table.clone();
|
||||
let index_builder = tbl.create_index(&[&column_name]);
|
||||
let index_builder =
|
||||
get_index_params_builder(&mut cx, index_params, index_builder).or_throw(&mut cx)?;
|
||||
let ivf_pq_builder = get_index_params_builder(&mut cx, index_params).or_throw(&mut cx)?;
|
||||
|
||||
let mut index_builder = tbl.create_index(&[column_name], Index::IvfPq(ivf_pq_builder));
|
||||
if let Some(replace) = replace {
|
||||
index_builder = index_builder.replace(replace);
|
||||
}
|
||||
|
||||
rt.spawn(async move {
|
||||
let idx_result = index_builder.build().await;
|
||||
let idx_result = index_builder.execute().await;
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
idx_result.or_throw(&mut cx)?;
|
||||
Ok(cx.boxed(JsTable::from(table)))
|
||||
@@ -57,26 +64,17 @@ pub fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise>
|
||||
fn get_index_params_builder(
|
||||
cx: &mut FunctionContext,
|
||||
obj: Handle<JsObject>,
|
||||
builder: IndexBuilder,
|
||||
) -> crate::error::Result<IndexBuilder> {
|
||||
let mut builder = match obj.get::<JsString, _, _>(cx, "type")?.value(cx).as_str() {
|
||||
"ivf_pq" => builder.ivf_pq(),
|
||||
_ => {
|
||||
return Err(InvalidIndexType {
|
||||
index_type: "".into(),
|
||||
})
|
||||
}
|
||||
};
|
||||
|
||||
if let Some(index_name) = obj.get_opt::<JsString, _, _>(cx, "index_name")? {
|
||||
builder = builder.name(index_name.value(cx).as_str());
|
||||
) -> crate::error::Result<IvfPqIndexBuilder> {
|
||||
if obj.get_opt::<JsString, _, _>(cx, "index_name")?.is_some() {
|
||||
return Err(crate::error::Error::LanceDB {
|
||||
message: "Setting the index_name is no longer supported".to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
let mut builder = IvfPqIndexBuilder::default();
|
||||
if let Some(metric_type) = obj.get_opt::<JsString, _, _>(cx, "metric_type")? {
|
||||
let metric_type = MetricType::try_from(metric_type.value(cx).as_str())?;
|
||||
builder = builder.metric_type(metric_type);
|
||||
builder = builder.distance_type(metric_type);
|
||||
}
|
||||
|
||||
if let Some(np) = obj.get_opt_u32(cx, "num_partitions")? {
|
||||
builder = builder.num_partitions(np);
|
||||
}
|
||||
@@ -86,11 +84,5 @@ fn get_index_params_builder(
|
||||
if let Some(max_iters) = obj.get_opt_u32(cx, "max_iters")? {
|
||||
builder = builder.max_iterations(max_iters);
|
||||
}
|
||||
if let Some(num_bits) = obj.get_opt_u32(cx, "num_bits")? {
|
||||
builder = builder.num_bits(num_bits);
|
||||
}
|
||||
if let Some(replace) = obj.get_opt::<JsBoolean, _, _>(cx, "replace")? {
|
||||
builder = builder.replace(replace.value(cx));
|
||||
}
|
||||
Ok(builder)
|
||||
}
|
||||
|
||||
@@ -297,11 +297,14 @@ impl JsTable {
|
||||
|
||||
let predicate = predicate.as_deref();
|
||||
|
||||
let update_result = table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.update(predicate, updates_arg)
|
||||
.await;
|
||||
let mut update_op = table.update();
|
||||
if let Some(predicate) = predicate {
|
||||
update_op = update_op.only_if(predicate);
|
||||
}
|
||||
for (column, value) in updates_arg {
|
||||
update_op = update_op.column(column, value);
|
||||
}
|
||||
let update_result = update_op.execute().await;
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
update_result.or_throw(&mut cx)?;
|
||||
Ok(cx.boxed(Self::from(table)))
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb"
|
||||
version = "0.4.12"
|
||||
version = "0.4.13"
|
||||
edition.workspace = true
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
@@ -26,6 +26,7 @@ lance = { workspace = true }
|
||||
lance-index = { workspace = true }
|
||||
lance-linalg = { workspace = true }
|
||||
lance-testing = { workspace = true }
|
||||
pin-project = { workspace = true }
|
||||
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
||||
log.workspace = true
|
||||
async-trait = "0"
|
||||
|
||||
@@ -20,6 +20,7 @@ use arrow_schema::{DataType, Field, Schema};
|
||||
use futures::TryStreamExt;
|
||||
|
||||
use lancedb::connection::Connection;
|
||||
use lancedb::index::Index;
|
||||
use lancedb::{connect, Result, Table as LanceDbTable};
|
||||
|
||||
#[tokio::main]
|
||||
@@ -142,23 +143,18 @@ async fn create_empty_table(db: &Connection) -> Result<LanceDbTable> {
|
||||
|
||||
async fn create_index(table: &LanceDbTable) -> Result<()> {
|
||||
// --8<-- [start:create_index]
|
||||
table
|
||||
.create_index(&["vector"])
|
||||
.ivf_pq()
|
||||
.num_partitions(8)
|
||||
.build()
|
||||
.await
|
||||
table.create_index(&["vector"], Index::Auto).execute().await
|
||||
// --8<-- [end:create_index]
|
||||
}
|
||||
|
||||
async fn search(table: &LanceDbTable) -> Result<Vec<RecordBatch>> {
|
||||
// --8<-- [start:search]
|
||||
Ok(table
|
||||
table
|
||||
.search(&[1.0; 128])
|
||||
.limit(2)
|
||||
.execute_stream()
|
||||
.await?
|
||||
.try_collect::<Vec<_>>()
|
||||
.await?)
|
||||
.await
|
||||
// --8<-- [end:search]
|
||||
}
|
||||
|
||||
@@ -12,4 +12,92 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
pub use lance::arrow::*;
|
||||
use std::{pin::Pin, sync::Arc};
|
||||
|
||||
pub use arrow_array;
|
||||
pub use arrow_schema;
|
||||
use futures::{Stream, StreamExt};
|
||||
|
||||
use crate::error::Result;
|
||||
|
||||
/// An iterator of batches that also has a schema
|
||||
pub trait RecordBatchReader: Iterator<Item = Result<arrow_array::RecordBatch>> {
|
||||
/// Returns the schema of this `RecordBatchReader`.
|
||||
///
|
||||
/// Implementation of this trait should guarantee that all `RecordBatch`'s returned by this
|
||||
/// reader should have the same schema as returned from this method.
|
||||
fn schema(&self) -> Arc<arrow_schema::Schema>;
|
||||
}
|
||||
|
||||
/// A simple RecordBatchReader formed from the two parts (iterator + schema)
|
||||
pub struct SimpleRecordBatchReader<I: Iterator<Item = Result<arrow_array::RecordBatch>>> {
|
||||
pub schema: Arc<arrow_schema::Schema>,
|
||||
pub batches: I,
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = Result<arrow_array::RecordBatch>>> Iterator for SimpleRecordBatchReader<I> {
|
||||
type Item = Result<arrow_array::RecordBatch>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
self.batches.next()
|
||||
}
|
||||
}
|
||||
|
||||
impl<I: Iterator<Item = Result<arrow_array::RecordBatch>>> RecordBatchReader
|
||||
for SimpleRecordBatchReader<I>
|
||||
{
|
||||
fn schema(&self) -> Arc<arrow_schema::Schema> {
|
||||
self.schema.clone()
|
||||
}
|
||||
}
|
||||
|
||||
/// A stream of batches that also has a schema
|
||||
pub trait RecordBatchStream: Stream<Item = Result<arrow_array::RecordBatch>> {
|
||||
/// Returns the schema of this `RecordBatchStream`.
|
||||
///
|
||||
/// Implementation of this trait should guarantee that all `RecordBatch`'s returned by this
|
||||
/// stream should have the same schema as returned from this method.
|
||||
fn schema(&self) -> Arc<arrow_schema::Schema>;
|
||||
}
|
||||
|
||||
/// A boxed RecordBatchStream that is also Send
|
||||
pub type SendableRecordBatchStream = Pin<Box<dyn RecordBatchStream + Send>>;
|
||||
|
||||
impl<I: lance::io::RecordBatchStream + 'static> From<I> for SendableRecordBatchStream {
|
||||
fn from(stream: I) -> Self {
|
||||
let schema = stream.schema();
|
||||
let mapped_stream = Box::pin(stream.map(|r| r.map_err(Into::into)));
|
||||
Box::pin(SimpleRecordBatchStream {
|
||||
schema,
|
||||
stream: mapped_stream,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// A simple RecordBatchStream formed from the two parts (stream + schema)
|
||||
#[pin_project::pin_project]
|
||||
pub struct SimpleRecordBatchStream<S: Stream<Item = Result<arrow_array::RecordBatch>>> {
|
||||
pub schema: Arc<arrow_schema::Schema>,
|
||||
#[pin]
|
||||
pub stream: S,
|
||||
}
|
||||
|
||||
impl<S: Stream<Item = Result<arrow_array::RecordBatch>>> Stream for SimpleRecordBatchStream<S> {
|
||||
type Item = Result<arrow_array::RecordBatch>;
|
||||
|
||||
fn poll_next(
|
||||
self: Pin<&mut Self>,
|
||||
cx: &mut std::task::Context<'_>,
|
||||
) -> std::task::Poll<Option<Self::Item>> {
|
||||
let this = self.project();
|
||||
this.stream.poll_next(cx)
|
||||
}
|
||||
}
|
||||
|
||||
impl<S: Stream<Item = Result<arrow_array::RecordBatch>>> RecordBatchStream
|
||||
for SimpleRecordBatchStream<S>
|
||||
{
|
||||
fn schema(&self) -> Arc<arrow_schema::Schema> {
|
||||
self.schema.clone()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -356,6 +356,15 @@ pub struct ConnectBuilder {
|
||||
aws_creds: Option<AwsCredential>,
|
||||
|
||||
/// The interval at which to check for updates from other processes.
|
||||
///
|
||||
/// If None, then consistency is not checked. For performance
|
||||
/// reasons, this is the default. For strong consistency, set this to
|
||||
/// zero seconds. Then every read will check for updates from other
|
||||
/// processes. As a compromise, you can set this to a non-zero timedelta
|
||||
/// for eventual consistency. If more than that interval has passed since
|
||||
/// the last check, then the table will be checked for updates. Note: this
|
||||
/// consistency only applies to read operations. Write operations are
|
||||
/// always consistent.
|
||||
read_consistency_interval: Option<std::time::Duration>,
|
||||
}
|
||||
|
||||
|
||||
@@ -12,181 +12,69 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::{cmp::max, sync::Arc};
|
||||
|
||||
use lance_index::IndexType;
|
||||
pub use lance_linalg::distance::MetricType;
|
||||
|
||||
pub mod vector;
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::{table::TableInternal, Result};
|
||||
|
||||
/// Index Parameters.
|
||||
pub enum IndexParams {
|
||||
Scalar {
|
||||
replace: bool,
|
||||
},
|
||||
IvfPq {
|
||||
replace: bool,
|
||||
metric_type: MetricType,
|
||||
num_partitions: u64,
|
||||
num_sub_vectors: u32,
|
||||
num_bits: u32,
|
||||
sample_rate: u32,
|
||||
max_iterations: u32,
|
||||
},
|
||||
use self::{scalar::BTreeIndexBuilder, vector::IvfPqIndexBuilder};
|
||||
|
||||
pub mod scalar;
|
||||
pub mod vector;
|
||||
|
||||
pub enum Index {
|
||||
Auto,
|
||||
BTree(BTreeIndexBuilder),
|
||||
IvfPq(IvfPqIndexBuilder),
|
||||
}
|
||||
|
||||
/// Builder for Index Parameters.
|
||||
|
||||
/// Builder for the create_index operation
|
||||
///
|
||||
/// The methods on this builder are used to specify options common to all indices.
|
||||
pub struct IndexBuilder {
|
||||
parent: Arc<dyn TableInternal>,
|
||||
pub(crate) index: Index,
|
||||
pub(crate) columns: Vec<String>,
|
||||
// General parameters
|
||||
/// Index name.
|
||||
pub(crate) name: Option<String>,
|
||||
/// Replace the existing index.
|
||||
pub(crate) replace: bool,
|
||||
|
||||
pub(crate) index_type: IndexType,
|
||||
|
||||
// Scalar index parameters
|
||||
// Nothing to set here.
|
||||
|
||||
// IVF_PQ parameters
|
||||
pub(crate) metric_type: MetricType,
|
||||
pub(crate) num_partitions: Option<u32>,
|
||||
// PQ related
|
||||
pub(crate) num_sub_vectors: Option<u32>,
|
||||
pub(crate) num_bits: u32,
|
||||
|
||||
/// The rate to find samples to train kmeans.
|
||||
pub(crate) sample_rate: u32,
|
||||
/// Max iteration to train kmeans.
|
||||
pub(crate) max_iterations: u32,
|
||||
}
|
||||
|
||||
impl IndexBuilder {
|
||||
pub(crate) fn new(parent: Arc<dyn TableInternal>, columns: &[&str]) -> Self {
|
||||
pub(crate) fn new(parent: Arc<dyn TableInternal>, columns: Vec<String>, index: Index) -> Self {
|
||||
Self {
|
||||
parent,
|
||||
columns: columns.iter().map(|c| c.to_string()).collect(),
|
||||
name: None,
|
||||
index,
|
||||
columns,
|
||||
replace: true,
|
||||
index_type: IndexType::Scalar,
|
||||
metric_type: MetricType::L2,
|
||||
num_partitions: None,
|
||||
num_sub_vectors: None,
|
||||
num_bits: 8,
|
||||
sample_rate: 256,
|
||||
max_iterations: 50,
|
||||
}
|
||||
}
|
||||
|
||||
/// Build a Scalar Index.
|
||||
/// Whether to replace the existing index, the default is `true`.
|
||||
///
|
||||
/// Accepted parameters:
|
||||
/// - `replace`: Replace the existing index.
|
||||
/// - `name`: Index name. Default: `None`
|
||||
pub fn scalar(mut self) -> Self {
|
||||
self.index_type = IndexType::Scalar;
|
||||
self
|
||||
}
|
||||
|
||||
/// Build an IVF PQ index.
|
||||
///
|
||||
/// Accepted parameters:
|
||||
/// - `replace`: Replace the existing index.
|
||||
/// - `name`: Index name. Default: `None`
|
||||
/// - `metric_type`: [MetricType] to use to build Vector Index.
|
||||
/// - `num_partitions`: Number of IVF partitions.
|
||||
/// - `num_sub_vectors`: Number of sub-vectors of PQ.
|
||||
/// - `num_bits`: Number of bits used for PQ centroids.
|
||||
/// - `sample_rate`: The rate to find samples to train kmeans.
|
||||
/// - `max_iterations`: Max iteration to train kmeans.
|
||||
pub fn ivf_pq(mut self) -> Self {
|
||||
self.index_type = IndexType::Vector;
|
||||
self
|
||||
}
|
||||
|
||||
/// The columns to build index on.
|
||||
pub fn columns(mut self, cols: &[&str]) -> Self {
|
||||
self.columns = cols.iter().map(|s| s.to_string()).collect();
|
||||
self
|
||||
}
|
||||
|
||||
/// Whether to replace the existing index, default is `true`.
|
||||
/// If this is false, and another index already exists on the same columns
|
||||
/// and the same name, then an error will be returned. This is true even if
|
||||
/// that index is out of date.
|
||||
pub fn replace(mut self, v: bool) -> Self {
|
||||
self.replace = v;
|
||||
self
|
||||
}
|
||||
|
||||
/// Set the index name.
|
||||
pub fn name(mut self, name: &str) -> Self {
|
||||
self.name = Some(name.to_string());
|
||||
self
|
||||
pub async fn execute(self) -> Result<()> {
|
||||
self.parent.clone().create_index(self).await
|
||||
}
|
||||
}
|
||||
|
||||
/// [MetricType] to use to build Vector Index.
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub enum IndexType {
|
||||
IvfPq,
|
||||
BTree,
|
||||
}
|
||||
|
||||
/// A description of an index currently configured on a column
|
||||
pub struct IndexConfig {
|
||||
/// The type of the index
|
||||
pub index_type: IndexType,
|
||||
/// The columns in the index
|
||||
///
|
||||
/// Default value is [MetricType::L2].
|
||||
pub fn metric_type(mut self, metric_type: MetricType) -> Self {
|
||||
self.metric_type = metric_type;
|
||||
self
|
||||
}
|
||||
|
||||
/// Number of IVF partitions.
|
||||
pub fn num_partitions(mut self, num_partitions: u32) -> Self {
|
||||
self.num_partitions = Some(num_partitions);
|
||||
self
|
||||
}
|
||||
|
||||
/// Number of sub-vectors of PQ.
|
||||
pub fn num_sub_vectors(mut self, num_sub_vectors: u32) -> Self {
|
||||
self.num_sub_vectors = Some(num_sub_vectors);
|
||||
self
|
||||
}
|
||||
|
||||
/// Number of bits used for PQ centroids.
|
||||
pub fn num_bits(mut self, num_bits: u32) -> Self {
|
||||
self.num_bits = num_bits;
|
||||
self
|
||||
}
|
||||
|
||||
/// The rate to find samples to train kmeans.
|
||||
pub fn sample_rate(mut self, sample_rate: u32) -> Self {
|
||||
self.sample_rate = sample_rate;
|
||||
self
|
||||
}
|
||||
|
||||
/// Max iteration to train kmeans.
|
||||
pub fn max_iterations(mut self, max_iterations: u32) -> Self {
|
||||
self.max_iterations = max_iterations;
|
||||
self
|
||||
}
|
||||
|
||||
/// Build the parameters.
|
||||
pub async fn build(self) -> Result<()> {
|
||||
self.parent.clone().do_create_index(self).await
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn suggested_num_partitions(rows: usize) -> u32 {
|
||||
let num_partitions = (rows as f64).sqrt() as u32;
|
||||
max(1, num_partitions)
|
||||
}
|
||||
|
||||
pub(crate) fn suggested_num_sub_vectors(dim: u32) -> u32 {
|
||||
if dim % 16 == 0 {
|
||||
// Should be more aggressive than this default.
|
||||
dim / 16
|
||||
} else if dim % 8 == 0 {
|
||||
dim / 8
|
||||
} else {
|
||||
log::warn!(
|
||||
"The dimension of the vector is not divisible by 8 or 16, \
|
||||
which may cause performance degradation in PQ"
|
||||
);
|
||||
1
|
||||
}
|
||||
/// Currently this is always a Vec of size 1. In the future there may
|
||||
/// be more columns to represent composite indices.
|
||||
pub columns: Vec<String>,
|
||||
}
|
||||
|
||||
30
rust/lancedb/src/index/scalar.rs
Normal file
30
rust/lancedb/src/index/scalar.rs
Normal file
@@ -0,0 +1,30 @@
|
||||
//! Scalar indices are exact indices that are used to quickly satisfy a variety of filters
|
||||
//! against a column of scalar values.
|
||||
//!
|
||||
//! Scalar indices are currently supported on numeric, string, boolean, and temporal columns.
|
||||
//!
|
||||
//! A scalar index will help with queries with filters like `x > 10`, `x < 10`, `x = 10`,
|
||||
//! etc. Scalar indices can also speed up prefiltering for vector searches. A single
|
||||
//! vector search with prefiltering can use both a scalar index and a vector index.
|
||||
|
||||
/// Builder for a btree index
|
||||
///
|
||||
/// A btree index is an index on scalar columns. The index stores a copy of the column
|
||||
/// in sorted order. A header entry is created for each block of rows (currently the
|
||||
/// block size is fixed at 4096). These header entries are stored in a separate
|
||||
/// cacheable structure (a btree). To search for data the header is used to determine
|
||||
/// which blocks need to be read from disk.
|
||||
///
|
||||
/// For example, a btree index in a table with 1Bi rows requires sizeof(Scalar) * 256Ki
|
||||
/// bytes of memory and will generally need to read sizeof(Scalar) * 4096 bytes to find
|
||||
/// the correct row ids.
|
||||
///
|
||||
/// This index is good for scalar columns with mostly distinct values and does best when
|
||||
/// the query is highly selective.
|
||||
///
|
||||
/// The btree index does not currently have any parameters though parameters such as the
|
||||
/// block size may be added in the future.
|
||||
#[derive(Default, Debug, Clone)]
|
||||
pub struct BTreeIndexBuilder {}
|
||||
|
||||
impl BTreeIndexBuilder {}
|
||||
@@ -12,10 +12,19 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
//! Vector indices are approximate indices that are used to find rows similar to
|
||||
//! a query vector. Vector indices speed up vector searches.
|
||||
//!
|
||||
//! Vector indices are only supported on fixed-size-list (tensor) columns of floating point
|
||||
//! values
|
||||
use std::cmp::max;
|
||||
|
||||
use serde::Deserialize;
|
||||
|
||||
use lance::table::format::{Index, Manifest};
|
||||
|
||||
use crate::DistanceType;
|
||||
|
||||
pub struct VectorIndex {
|
||||
pub columns: Vec<String>,
|
||||
pub index_name: String,
|
||||
@@ -42,3 +51,145 @@ pub struct VectorIndexStatistics {
|
||||
pub num_indexed_rows: usize,
|
||||
pub num_unindexed_rows: usize,
|
||||
}
|
||||
|
||||
/// Builder for an IVF PQ index.
|
||||
///
|
||||
/// This index stores a compressed (quantized) copy of every vector. These vectors
|
||||
/// are grouped into partitions of similar vectors. Each partition keeps track of
|
||||
/// a centroid which is the average value of all vectors in the group.
|
||||
///
|
||||
/// During a query the centroids are compared with the query vector to find the closest
|
||||
/// partitions. The compressed vectors in these partitions are then searched to find
|
||||
/// the closest vectors.
|
||||
///
|
||||
/// The compression scheme is called product quantization. Each vector is divided into
|
||||
/// subvectors and then each subvector is quantized into a small number of bits. the
|
||||
/// parameters `num_bits` and `num_subvectors` control this process, providing a tradeoff
|
||||
/// between index size (and thus search speed) and index accuracy.
|
||||
///
|
||||
/// The partitioning process is called IVF and the `num_partitions` parameter controls how
|
||||
/// many groups to create.
|
||||
///
|
||||
/// Note that training an IVF PQ index on a large dataset is a slow operation and
|
||||
/// currently is also a memory intensive operation.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct IvfPqIndexBuilder {
|
||||
pub(crate) distance_type: DistanceType,
|
||||
pub(crate) num_partitions: Option<u32>,
|
||||
pub(crate) num_sub_vectors: Option<u32>,
|
||||
pub(crate) sample_rate: u32,
|
||||
pub(crate) max_iterations: u32,
|
||||
}
|
||||
|
||||
impl Default for IvfPqIndexBuilder {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
distance_type: DistanceType::L2,
|
||||
num_partitions: None,
|
||||
num_sub_vectors: None,
|
||||
sample_rate: 256,
|
||||
max_iterations: 50,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl IvfPqIndexBuilder {
|
||||
/// [DistanceType] to use to build the index.
|
||||
///
|
||||
/// Default value is [DistanceType::L2].
|
||||
///
|
||||
/// This is used when training the index to calculate the IVF partitions (vectors are
|
||||
/// grouped in partitions with similar vectors according to this distance type) and to
|
||||
/// calculate a subvector's code during quantization.
|
||||
///
|
||||
/// The metric type used to train an index MUST match the metric type used to search the
|
||||
/// index. Failure to do so will yield inaccurate results.
|
||||
pub fn distance_type(mut self, distance_type: DistanceType) -> Self {
|
||||
self.distance_type = distance_type;
|
||||
self
|
||||
}
|
||||
|
||||
/// The number of IVF partitions to create.
|
||||
///
|
||||
/// This value should generally scale with the number of rows in the dataset. By default
|
||||
/// the number of partitions is the square root of the number of rows.
|
||||
///
|
||||
/// If this value is too large then the first part of the search (picking the right partition)
|
||||
/// will be slow. If this value is too small then the second part of the search (searching
|
||||
/// within a partition) will be slow.
|
||||
pub fn num_partitions(mut self, num_partitions: u32) -> Self {
|
||||
self.num_partitions = Some(num_partitions);
|
||||
self
|
||||
}
|
||||
|
||||
/// Number of sub-vectors of PQ.
|
||||
///
|
||||
/// This value controls how much the vector is compressed during the quantization step.
|
||||
/// The more sub vectors there are the less the vector is compressed. The default is
|
||||
/// the dimension of the vector divided by 16. If the dimension is not evenly divisible
|
||||
/// by 16 we use the dimension divded by 8.
|
||||
///
|
||||
/// The above two cases are highly preferred. Having 8 or 16 values per subvector allows
|
||||
/// us to use efficient SIMD instructions.
|
||||
///
|
||||
/// If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
|
||||
/// will likely result in poor performance.
|
||||
pub fn num_sub_vectors(mut self, num_sub_vectors: u32) -> Self {
|
||||
self.num_sub_vectors = Some(num_sub_vectors);
|
||||
self
|
||||
}
|
||||
|
||||
/// The rate used to calculate the number of training vectors for kmeans.
|
||||
///
|
||||
/// When an IVF PQ index is trained, we need to calculate partitions. These are groups
|
||||
/// of vectors that are similar to each other. To do this we use an algorithm called kmeans.
|
||||
///
|
||||
/// Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
|
||||
/// random sample of the data. This parameter controls the size of the sample. The total
|
||||
/// number of vectors used to train the index is `sample_rate * num_partitions`.
|
||||
///
|
||||
/// Increasing this value might improve the quality of the index but in most cases the
|
||||
/// default should be sufficient.
|
||||
///
|
||||
/// The default value is 256.
|
||||
pub fn sample_rate(mut self, sample_rate: u32) -> Self {
|
||||
self.sample_rate = sample_rate;
|
||||
self
|
||||
}
|
||||
|
||||
/// Max iterations to train kmeans.
|
||||
///
|
||||
/// When training an IVF PQ index we use kmeans to calculate the partitions. This parameter
|
||||
/// controls how many iterations of kmeans to run.
|
||||
///
|
||||
/// Increasing this might improve the quality of the index but in most cases the parameter
|
||||
/// is unused because kmeans will converge with fewer iterations. The parameter is only
|
||||
/// used in cases where kmeans does not appear to converge. In those cases it is unlikely
|
||||
/// that setting this larger will lead to the index converging anyways.
|
||||
///
|
||||
/// The default value is 50.
|
||||
pub fn max_iterations(mut self, max_iterations: u32) -> Self {
|
||||
self.max_iterations = max_iterations;
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) fn suggested_num_partitions(rows: usize) -> u32 {
|
||||
let num_partitions = (rows as f64).sqrt() as u32;
|
||||
max(1, num_partitions)
|
||||
}
|
||||
|
||||
pub(crate) fn suggested_num_sub_vectors(dim: u32) -> u32 {
|
||||
if dim % 16 == 0 {
|
||||
// Should be more aggressive than this default.
|
||||
dim / 16
|
||||
} else if dim % 8 == 0 {
|
||||
dim / 8
|
||||
} else {
|
||||
log::warn!(
|
||||
"The dimension of the vector is not divisible by 8 or 16, \
|
||||
which may cause performance degradation in PQ"
|
||||
);
|
||||
1
|
||||
}
|
||||
}
|
||||
|
||||
@@ -130,16 +130,15 @@
|
||||
//! # use arrow_array::{FixedSizeListArray, types::Float32Type, RecordBatch,
|
||||
//! # RecordBatchIterator, Int32Array};
|
||||
//! # use arrow_schema::{Schema, Field, DataType};
|
||||
//! use lancedb::index::Index;
|
||||
//! # tokio::runtime::Runtime::new().unwrap().block_on(async {
|
||||
//! # let tmpdir = tempfile::tempdir().unwrap();
|
||||
//! # let db = lancedb::connect(tmpdir.path().to_str().unwrap()).execute().await.unwrap();
|
||||
//! # let tbl = db.open_table("idx_test").execute().await.unwrap();
|
||||
//! tbl.create_index(&["vector"])
|
||||
//! .ivf_pq()
|
||||
//! .num_partitions(256)
|
||||
//! .build()
|
||||
//! .await
|
||||
//! .unwrap();
|
||||
//! tbl.create_index(&["vector"], Index::Auto)
|
||||
//! .execute()
|
||||
//! .await
|
||||
//! .unwrap();
|
||||
//! # });
|
||||
//! ```
|
||||
//!
|
||||
@@ -181,6 +180,7 @@
|
||||
//! # });
|
||||
//! ```
|
||||
|
||||
pub mod arrow;
|
||||
pub mod connection;
|
||||
pub mod data;
|
||||
pub mod error;
|
||||
@@ -194,6 +194,7 @@ pub mod table;
|
||||
pub mod utils;
|
||||
|
||||
pub use error::{Error, Result};
|
||||
pub use lance_linalg::distance::DistanceType;
|
||||
pub use table::Table;
|
||||
|
||||
/// Connect to a database
|
||||
|
||||
@@ -15,9 +15,9 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow_array::Float32Array;
|
||||
use lance::dataset::scanner::DatasetRecordBatchStream;
|
||||
use lance_linalg::distance::MetricType;
|
||||
|
||||
use crate::arrow::SendableRecordBatchStream;
|
||||
use crate::error::Result;
|
||||
use crate::table::TableInternal;
|
||||
|
||||
@@ -81,13 +81,15 @@ impl Query {
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert the query plan to a [`DatasetRecordBatchStream`]
|
||||
/// Convert the query plan to a [`SendableRecordBatchStream`]
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// * A [DatasetRecordBatchStream] with the query's results.
|
||||
pub async fn execute_stream(&self) -> Result<DatasetRecordBatchStream> {
|
||||
self.parent.clone().do_query(self).await
|
||||
/// * A [SendableRecordBatchStream] with the query's results.
|
||||
pub async fn execute_stream(&self) -> Result<SendableRecordBatchStream> {
|
||||
Ok(SendableRecordBatchStream::from(
|
||||
self.parent.clone().query(self).await?,
|
||||
))
|
||||
}
|
||||
|
||||
/// Set the column to query
|
||||
@@ -363,6 +365,10 @@ mod tests {
|
||||
let arr: &Int32Array = b["id"].as_primitive();
|
||||
assert!(arr.iter().all(|x| x.unwrap() % 2 == 0));
|
||||
}
|
||||
|
||||
// Reject bad filter
|
||||
let result = table.query().filter("id = 0 AND").execute_stream().await;
|
||||
assert!(result.is_err());
|
||||
}
|
||||
|
||||
fn make_non_empty_batches() -> impl RecordBatchReader + Send + 'static {
|
||||
|
||||
@@ -5,11 +5,11 @@ use lance::dataset::{scanner::DatasetRecordBatchStream, ColumnAlteration, NewCol
|
||||
|
||||
use crate::{
|
||||
error::Result,
|
||||
index::IndexBuilder,
|
||||
index::{IndexBuilder, IndexConfig},
|
||||
query::Query,
|
||||
table::{
|
||||
merge::MergeInsertBuilder, AddDataBuilder, NativeTable, OptimizeAction, OptimizeStats,
|
||||
TableInternal,
|
||||
TableInternal, UpdateBuilder,
|
||||
},
|
||||
};
|
||||
|
||||
@@ -45,25 +45,40 @@ impl TableInternal for RemoteTable {
|
||||
fn name(&self) -> &str {
|
||||
&self.name
|
||||
}
|
||||
async fn version(&self) -> Result<u64> {
|
||||
todo!()
|
||||
}
|
||||
async fn checkout(&self, _version: u64) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn checkout_latest(&self) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn restore(&self) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn schema(&self) -> Result<SchemaRef> {
|
||||
todo!()
|
||||
}
|
||||
async fn count_rows(&self, _filter: Option<String>) -> Result<usize> {
|
||||
todo!()
|
||||
}
|
||||
async fn do_add(&self, _add: AddDataBuilder) -> Result<()> {
|
||||
async fn add(&self, _add: AddDataBuilder) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn do_query(&self, _query: &Query) -> Result<DatasetRecordBatchStream> {
|
||||
async fn query(&self, _query: &Query) -> Result<DatasetRecordBatchStream> {
|
||||
todo!()
|
||||
}
|
||||
async fn update(&self, _update: UpdateBuilder) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn delete(&self, _predicate: &str) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn do_create_index(&self, _index: IndexBuilder) -> Result<()> {
|
||||
async fn create_index(&self, _index: IndexBuilder) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn do_merge_insert(
|
||||
async fn merge_insert(
|
||||
&self,
|
||||
_params: MergeInsertBuilder,
|
||||
_new_data: Box<dyn RecordBatchReader + Send>,
|
||||
@@ -86,4 +101,7 @@ impl TableInternal for RemoteTable {
|
||||
async fn drop_columns(&self, _columns: &[&str]) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -83,6 +83,33 @@ impl DatasetRef {
|
||||
}
|
||||
}
|
||||
|
||||
async fn as_time_travel(&mut self, target_version: u64) -> Result<()> {
|
||||
match self {
|
||||
Self::Latest { dataset, .. } => {
|
||||
*self = Self::TimeTravel {
|
||||
dataset: dataset.checkout_version(target_version).await?,
|
||||
version: target_version,
|
||||
};
|
||||
}
|
||||
Self::TimeTravel { dataset, version } => {
|
||||
if *version != target_version {
|
||||
*self = Self::TimeTravel {
|
||||
dataset: dataset.checkout_version(target_version).await?,
|
||||
version: target_version,
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn time_travel_version(&self) -> Option<u64> {
|
||||
match self {
|
||||
Self::Latest { .. } => None,
|
||||
Self::TimeTravel { version, .. } => Some(*version),
|
||||
}
|
||||
}
|
||||
|
||||
fn set_latest(&mut self, dataset: Dataset) {
|
||||
match self {
|
||||
Self::Latest {
|
||||
@@ -106,23 +133,6 @@ impl DatasetConsistencyWrapper {
|
||||
})))
|
||||
}
|
||||
|
||||
/// Create a new wrapper in the time travel mode.
|
||||
pub fn new_time_travel(dataset: Dataset, version: u64) -> Self {
|
||||
Self(Arc::new(RwLock::new(DatasetRef::TimeTravel {
|
||||
dataset,
|
||||
version,
|
||||
})))
|
||||
}
|
||||
|
||||
/// Create an independent copy of self.
|
||||
///
|
||||
/// Unlike Clone, this will track versions independently of the original wrapper and
|
||||
/// will be tied to a different RwLock.
|
||||
pub async fn duplicate(&self) -> Self {
|
||||
let ds_ref = self.0.read().await;
|
||||
Self(Arc::new(RwLock::new((*ds_ref).clone())))
|
||||
}
|
||||
|
||||
/// Get an immutable reference to the dataset.
|
||||
pub async fn get(&self) -> Result<DatasetReadGuard<'_>> {
|
||||
self.ensure_up_to_date().await?;
|
||||
@@ -132,7 +142,19 @@ impl DatasetConsistencyWrapper {
|
||||
}
|
||||
|
||||
/// Get a mutable reference to the dataset.
|
||||
///
|
||||
/// If the dataset is in time travel mode this will fail
|
||||
pub async fn get_mut(&self) -> Result<DatasetWriteGuard<'_>> {
|
||||
self.ensure_mutable().await?;
|
||||
self.ensure_up_to_date().await?;
|
||||
Ok(DatasetWriteGuard {
|
||||
guard: self.0.write().await,
|
||||
})
|
||||
}
|
||||
|
||||
/// Get a mutable reference to the dataset without requiring the
|
||||
/// dataset to be in a Latest mode.
|
||||
pub async fn get_mut_unchecked(&self) -> Result<DatasetWriteGuard<'_>> {
|
||||
self.ensure_up_to_date().await?;
|
||||
Ok(DatasetWriteGuard {
|
||||
guard: self.0.write().await,
|
||||
@@ -140,7 +162,7 @@ impl DatasetConsistencyWrapper {
|
||||
}
|
||||
|
||||
/// Convert into a wrapper in latest version mode
|
||||
pub async fn as_latest(&mut self, read_consistency_interval: Option<Duration>) -> Result<()> {
|
||||
pub async fn as_latest(&self, read_consistency_interval: Option<Duration>) -> Result<()> {
|
||||
self.0
|
||||
.write()
|
||||
.await
|
||||
@@ -148,6 +170,10 @@ impl DatasetConsistencyWrapper {
|
||||
.await
|
||||
}
|
||||
|
||||
pub async fn as_time_travel(&self, target_version: u64) -> Result<()> {
|
||||
self.0.write().await.as_time_travel(target_version).await
|
||||
}
|
||||
|
||||
/// Provide a known latest version of the dataset.
|
||||
///
|
||||
/// This is usually done after some write operation, which inherently will
|
||||
@@ -160,6 +186,22 @@ impl DatasetConsistencyWrapper {
|
||||
self.0.write().await.reload().await
|
||||
}
|
||||
|
||||
/// Returns the version, if in time travel mode, or None otherwise
|
||||
pub async fn time_travel_version(&self) -> Option<u64> {
|
||||
self.0.read().await.time_travel_version()
|
||||
}
|
||||
|
||||
pub async fn ensure_mutable(&self) -> Result<()> {
|
||||
let dataset_ref = self.0.read().await;
|
||||
match &*dataset_ref {
|
||||
DatasetRef::Latest { .. } => Ok(()),
|
||||
DatasetRef::TimeTravel { .. } => Err(crate::Error::InvalidInput {
|
||||
message: "table cannot be modified when a specific version is checked out"
|
||||
.to_string(),
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
async fn is_up_to_date(&self) -> Result<bool> {
|
||||
let dataset_ref = self.0.read().await;
|
||||
match &*dataset_ref {
|
||||
|
||||
@@ -98,6 +98,6 @@ impl MergeInsertBuilder {
|
||||
///
|
||||
/// Nothing is returned but the [`super::Table`] is updated
|
||||
pub async fn execute(self, new_data: Box<dyn RecordBatchReader + Send>) -> Result<()> {
|
||||
self.table.clone().do_merge_insert(self, new_data).await
|
||||
self.table.clone().merge_insert(self, new_data).await
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user