mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-24 05:49:57 +00:00
Compare commits
38 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
38b0d91848 | ||
|
|
6826039575 | ||
|
|
3e9321fc40 | ||
|
|
2ded17452b | ||
|
|
dfd9d2ac99 | ||
|
|
162880140e | ||
|
|
99d9ced6d5 | ||
|
|
96933d7df8 | ||
|
|
d369233b3d | ||
|
|
43a670ed4b | ||
|
|
cb9a00a28d | ||
|
|
72af977a73 | ||
|
|
7cecb71df0 | ||
|
|
285071e5c8 | ||
|
|
114866fbcf | ||
|
|
5387c0e243 | ||
|
|
53d1535de1 | ||
|
|
b2f88f0b29 | ||
|
|
f2e3989831 | ||
|
|
83ae52938a | ||
|
|
267aa83bf8 | ||
|
|
cc72050206 | ||
|
|
72543c8b9d | ||
|
|
97d6210c33 | ||
|
|
a3d0c27b0a | ||
|
|
b23d8abcdd | ||
|
|
e3ea5cf9b9 | ||
|
|
4f8b086175 | ||
|
|
72330fb759 | ||
|
|
e3b2c5f438 | ||
|
|
66a881b33a | ||
|
|
a7515d6ee2 | ||
|
|
587c0824af | ||
|
|
b38a4269d0 | ||
|
|
119d88b9db | ||
|
|
74f660d223 | ||
|
|
b2b0979b90 | ||
|
|
ee2a40b182 |
@@ -1,5 +1,5 @@
|
|||||||
[tool.bumpversion]
|
[tool.bumpversion]
|
||||||
current_version = "0.13.0-beta.1"
|
current_version = "0.13.1-beta.0"
|
||||||
parse = """(?x)
|
parse = """(?x)
|
||||||
(?P<major>0|[1-9]\\d*)\\.
|
(?P<major>0|[1-9]\\d*)\\.
|
||||||
(?P<minor>0|[1-9]\\d*)\\.
|
(?P<minor>0|[1-9]\\d*)\\.
|
||||||
@@ -87,6 +87,16 @@ glob = "node/package.json"
|
|||||||
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
|
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
|
||||||
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
|
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-linux-arm64-musl\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-linux-arm64-musl\": \"{current_version}\""
|
||||||
|
|
||||||
|
[[tool.bumpversion.files]]
|
||||||
|
glob = "node/package.json"
|
||||||
|
replace = "\"@lancedb/vectordb-linux-x64-musl\": \"{new_version}\""
|
||||||
|
search = "\"@lancedb/vectordb-linux-x64-musl\": \"{current_version}\""
|
||||||
|
|
||||||
[[tool.bumpversion.files]]
|
[[tool.bumpversion.files]]
|
||||||
glob = "node/package.json"
|
glob = "node/package.json"
|
||||||
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
|
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
|
||||||
|
|||||||
@@ -31,6 +31,9 @@ rustflags = [
|
|||||||
[target.x86_64-unknown-linux-gnu]
|
[target.x86_64-unknown-linux-gnu]
|
||||||
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
|
||||||
|
|
||||||
|
[target.x86_64-unknown-linux-musl]
|
||||||
|
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
|
||||||
|
|
||||||
[target.aarch64-apple-darwin]
|
[target.aarch64-apple-darwin]
|
||||||
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
|
||||||
|
|
||||||
|
|||||||
1
.github/workflows/nodejs.yml
vendored
1
.github/workflows/nodejs.yml
vendored
@@ -104,7 +104,6 @@ jobs:
|
|||||||
OPENAI_BASE_URL: http://0.0.0.0:8000
|
OPENAI_BASE_URL: http://0.0.0.0:8000
|
||||||
run: |
|
run: |
|
||||||
python ci/mock_openai.py &
|
python ci/mock_openai.py &
|
||||||
ss -ltnp | grep :8000
|
|
||||||
cd nodejs/examples
|
cd nodejs/examples
|
||||||
npm test
|
npm test
|
||||||
macos:
|
macos:
|
||||||
|
|||||||
500
.github/workflows/npm-publish.yml
vendored
500
.github/workflows/npm-publish.yml
vendored
@@ -101,7 +101,7 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
nodejs/dist/*.node
|
nodejs/dist/*.node
|
||||||
|
|
||||||
node-linux:
|
node-linux-gnu:
|
||||||
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
||||||
runs-on: ${{ matrix.config.runner }}
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
@@ -137,11 +137,63 @@ jobs:
|
|||||||
- name: Upload Linux Artifacts
|
- name: Upload Linux Artifacts
|
||||||
uses: actions/upload-artifact@v4
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: node-native-linux-${{ matrix.config.arch }}
|
name: node-native-linux-${{ matrix.config.arch }}-gnu
|
||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-linux*.tgz
|
node/dist/lancedb-vectordb-linux*.tgz
|
||||||
|
|
||||||
nodejs-linux:
|
node-linux-musl:
|
||||||
|
name: vectordb (${{ matrix.config.arch}}-unknown-linux-musl)
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container: alpine:edge
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64
|
||||||
|
- arch: aarch64
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install common dependencies
|
||||||
|
run: |
|
||||||
|
apk add protobuf-dev curl clang mold grep npm bash
|
||||||
|
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||||
|
echo "source $HOME/.cargo/env" >> saved_env
|
||||||
|
echo "export CC=clang" >> saved_env
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||||
|
- name: Configure aarch64 build
|
||||||
|
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||||
|
run: |
|
||||||
|
source "$HOME/.cargo/env"
|
||||||
|
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
|
||||||
|
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||||
|
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||||
|
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||||
|
curl -sSf $apk_url > apk_list
|
||||||
|
for pkg in gcc libgcc musl; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||||
|
mkdir -p $sysroot_lib
|
||||||
|
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||||
|
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||||
|
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||||
|
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||||
|
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||||
|
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||||
|
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-cpu=apple-m1 -Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||||
|
- name: Build Linux Artifacts
|
||||||
|
run: |
|
||||||
|
source ./saved_env
|
||||||
|
bash ci/manylinux_node/build_vectordb.sh ${{ matrix.config.arch }}
|
||||||
|
- name: Upload Linux Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: node-native-linux-${{ matrix.config.arch }}-musl
|
||||||
|
path: |
|
||||||
|
node/dist/lancedb-vectordb-linux*.tgz
|
||||||
|
|
||||||
|
nodejs-linux-gnu:
|
||||||
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||||
runs-on: ${{ matrix.config.runner }}
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
@@ -178,7 +230,7 @@ jobs:
|
|||||||
- name: Upload Linux Artifacts
|
- name: Upload Linux Artifacts
|
||||||
uses: actions/upload-artifact@v4
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
name: nodejs-native-linux-${{ matrix.config.arch }}
|
name: nodejs-native-linux-${{ matrix.config.arch }}-gnu
|
||||||
path: |
|
path: |
|
||||||
nodejs/dist/*.node
|
nodejs/dist/*.node
|
||||||
# The generic files are the same in all distros so we just pick
|
# The generic files are the same in all distros so we just pick
|
||||||
@@ -192,6 +244,62 @@ jobs:
|
|||||||
nodejs/dist/*
|
nodejs/dist/*
|
||||||
!nodejs/dist/*.node
|
!nodejs/dist/*.node
|
||||||
|
|
||||||
|
nodejs-linux-musl:
|
||||||
|
name: lancedb (${{ matrix.config.arch}}-unknown-linux-musl
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
container: alpine:edge
|
||||||
|
# Only runs on tags that matches the make-release action
|
||||||
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
config:
|
||||||
|
- arch: x86_64
|
||||||
|
- arch: aarch64
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- name: Install common dependencies
|
||||||
|
run: |
|
||||||
|
apk add protobuf-dev curl clang mold grep npm bash openssl-dev openssl-libs-static
|
||||||
|
curl --proto '=https' --tlsv1.3 -sSf https://raw.githubusercontent.com/rust-lang/rustup/refs/heads/master/rustup-init.sh | sh -s -- -y --default-toolchain 1.80.0
|
||||||
|
echo "source $HOME/.cargo/env" >> saved_env
|
||||||
|
echo "export CC=clang" >> saved_env
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-cpu=haswell -Ctarget-feature=-crt-static,+avx2,+fma,+f16c -Clinker=clang -Clink-arg=-fuse-ld=mold'" >> saved_env
|
||||||
|
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=/usr/include" >> saved_env
|
||||||
|
echo "export X86_64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=/usr/lib" >> saved_env
|
||||||
|
- name: Configure aarch64 build
|
||||||
|
if: ${{ matrix.config.arch == 'aarch64' }}
|
||||||
|
run: |
|
||||||
|
source "$HOME/.cargo/env"
|
||||||
|
rustup target add aarch64-unknown-linux-musl --toolchain 1.80.0
|
||||||
|
crt=$(realpath $(dirname $(rustup which rustc))/../lib/rustlib/aarch64-unknown-linux-musl/lib/self-contained)
|
||||||
|
sysroot_lib=/usr/aarch64-unknown-linux-musl/usr/lib
|
||||||
|
apk_url=https://dl-cdn.alpinelinux.org/alpine/latest-stable/main/aarch64/
|
||||||
|
curl -sSf $apk_url > apk_list
|
||||||
|
for pkg in gcc libgcc musl openssl-dev openssl-libs-static; do curl -sSf $apk_url$(cat apk_list | grep -oP '(?<=")'$pkg'-\d.*?(?=")') | tar zxf -; done
|
||||||
|
mkdir -p $sysroot_lib
|
||||||
|
echo 'GROUP ( libgcc_s.so.1 -lgcc )' > $sysroot_lib/libgcc_s.so
|
||||||
|
cp usr/lib/libgcc_s.so.1 $sysroot_lib
|
||||||
|
cp usr/lib/gcc/aarch64-alpine-linux-musl/*/libgcc.a $sysroot_lib
|
||||||
|
cp lib/ld-musl-aarch64.so.1 $sysroot_lib/libc.so
|
||||||
|
echo '!<arch>' > $sysroot_lib/libdl.a
|
||||||
|
(cd $crt && cp crti.o crtbeginS.o crtendS.o crtn.o -t $sysroot_lib)
|
||||||
|
echo "export CARGO_BUILD_TARGET=aarch64-unknown-linux-musl" >> saved_env
|
||||||
|
echo "export RUSTFLAGS='-Ctarget-feature=-crt-static,+neon,+fp16,+fhm,+dotprod -Clinker=clang -Clink-arg=-fuse-ld=mold -Clink-arg=--target=aarch64-unknown-linux-musl -Clink-arg=--sysroot=/usr/aarch64-unknown-linux-musl -Clink-arg=-lc'" >> saved_env
|
||||||
|
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_INCLUDE_DIR=$(realpath usr/include)" >> saved_env
|
||||||
|
echo "export AARCH64_UNKNOWN_LINUX_MUSL_OPENSSL_LIB_DIR=$(realpath usr/lib)" >> saved_env
|
||||||
|
- name: Build Linux Artifacts
|
||||||
|
run: |
|
||||||
|
source ./saved_env
|
||||||
|
bash ci/manylinux_node/build_lancedb.sh ${{ matrix.config.arch }}
|
||||||
|
- name: Upload Linux Artifacts
|
||||||
|
uses: actions/upload-artifact@v4
|
||||||
|
with:
|
||||||
|
name: nodejs-native-linux-${{ matrix.config.arch }}-musl
|
||||||
|
path: |
|
||||||
|
nodejs/dist/*.node
|
||||||
|
|
||||||
node-windows:
|
node-windows:
|
||||||
name: vectordb ${{ matrix.target }}
|
name: vectordb ${{ matrix.target }}
|
||||||
runs-on: windows-2022
|
runs-on: windows-2022
|
||||||
@@ -226,108 +334,109 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
node/dist/lancedb-vectordb-win32*.tgz
|
node/dist/lancedb-vectordb-win32*.tgz
|
||||||
|
|
||||||
node-windows-arm64:
|
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
|
||||||
name: vectordb win32-arm64-msvc
|
# node-windows-arm64:
|
||||||
runs-on: windows-4x-arm
|
# name: vectordb win32-arm64-msvc
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
# runs-on: windows-4x-arm
|
||||||
steps:
|
# if: startsWith(github.ref, 'refs/tags/v')
|
||||||
- uses: actions/checkout@v4
|
# steps:
|
||||||
- name: Install Git
|
# - uses: actions/checkout@v4
|
||||||
run: |
|
# - name: Install Git
|
||||||
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
# run: |
|
||||||
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||||
shell: powershell
|
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||||
- name: Add Git to PATH
|
# shell: powershell
|
||||||
run: |
|
# - name: Add Git to PATH
|
||||||
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
# run: |
|
||||||
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||||
shell: powershell
|
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||||
- name: Configure Git symlinks
|
# shell: powershell
|
||||||
run: git config --global core.symlinks true
|
# - name: Configure Git symlinks
|
||||||
- uses: actions/checkout@v4
|
# run: git config --global core.symlinks true
|
||||||
- uses: actions/setup-python@v5
|
# - uses: actions/checkout@v4
|
||||||
with:
|
# - uses: actions/setup-python@v5
|
||||||
python-version: "3.13"
|
# with:
|
||||||
- name: Install Visual Studio Build Tools
|
# python-version: "3.13"
|
||||||
run: |
|
# - name: Install Visual Studio Build Tools
|
||||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
# run: |
|
||||||
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||||
"--installPath", "C:\BuildTools", `
|
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
# "--installPath", "C:\BuildTools", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||||
shell: powershell
|
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||||
- name: Add Visual Studio Build Tools to PATH
|
# shell: powershell
|
||||||
run: |
|
# - name: Add Visual Studio Build Tools to PATH
|
||||||
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
# run: |
|
||||||
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||||
|
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||||
|
|
||||||
# Add MSVC runtime libraries to LIB
|
# # Add MSVC runtime libraries to LIB
|
||||||
$env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
|
# $env:LIB = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\lib\arm64;" +
|
||||||
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
|
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;" +
|
||||||
"C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
# "C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||||
Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
|
# Add-Content $env:GITHUB_ENV "LIB=$env:LIB"
|
||||||
|
|
||||||
# Add INCLUDE paths
|
# # Add INCLUDE paths
|
||||||
$env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
|
# $env:INCLUDE = "C:\BuildTools\VC\Tools\MSVC\$latestVersion\include;" +
|
||||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
|
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\ucrt;" +
|
||||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
|
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\um;" +
|
||||||
"C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
|
# "C:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\shared"
|
||||||
Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
|
# Add-Content $env:GITHUB_ENV "INCLUDE=$env:INCLUDE"
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Install Rust
|
# - name: Install Rust
|
||||||
run: |
|
# run: |
|
||||||
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||||
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Add Rust to PATH
|
# - name: Add Rust to PATH
|
||||||
run: |
|
# run: |
|
||||||
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
|
|
||||||
- uses: Swatinem/rust-cache@v2
|
# - uses: Swatinem/rust-cache@v2
|
||||||
with:
|
# with:
|
||||||
workspaces: rust
|
# workspaces: rust
|
||||||
- name: Install 7-Zip ARM
|
# - name: Install 7-Zip ARM
|
||||||
run: |
|
# run: |
|
||||||
New-Item -Path 'C:\7zip' -ItemType Directory
|
# New-Item -Path 'C:\7zip' -ItemType Directory
|
||||||
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||||
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Add 7-Zip to PATH
|
# - name: Add 7-Zip to PATH
|
||||||
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Install Protoc v21.12
|
# - name: Install Protoc v21.12
|
||||||
working-directory: C:\
|
# working-directory: C:\
|
||||||
run: |
|
# run: |
|
||||||
if (Test-Path 'C:\protoc') {
|
# if (Test-Path 'C:\protoc') {
|
||||||
Write-Host "Protoc directory exists, skipping installation"
|
# Write-Host "Protoc directory exists, skipping installation"
|
||||||
return
|
# return
|
||||||
}
|
# }
|
||||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
# New-Item -Path 'C:\protoc' -ItemType Directory
|
||||||
Set-Location C:\protoc
|
# Set-Location C:\protoc
|
||||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||||
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Add Protoc to PATH
|
# - name: Add Protoc to PATH
|
||||||
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Build Windows native node modules
|
# - name: Build Windows native node modules
|
||||||
run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
|
# run: .\ci\build_windows_artifacts.ps1 aarch64-pc-windows-msvc
|
||||||
- name: Upload Windows ARM64 Artifacts
|
# - name: Upload Windows ARM64 Artifacts
|
||||||
uses: actions/upload-artifact@v4
|
# uses: actions/upload-artifact@v4
|
||||||
with:
|
# with:
|
||||||
name: node-native-windows-arm64
|
# name: node-native-windows-arm64
|
||||||
path: |
|
# path: |
|
||||||
node/dist/*.node
|
# node/dist/*.node
|
||||||
|
|
||||||
nodejs-windows:
|
nodejs-windows:
|
||||||
name: lancedb ${{ matrix.target }}
|
name: lancedb ${{ matrix.target }}
|
||||||
@@ -363,102 +472,103 @@ jobs:
|
|||||||
path: |
|
path: |
|
||||||
nodejs/dist/*.node
|
nodejs/dist/*.node
|
||||||
|
|
||||||
nodejs-windows-arm64:
|
# TODO: re-enable once working https://github.com/lancedb/lancedb/pull/1831
|
||||||
name: lancedb win32-arm64-msvc
|
# nodejs-windows-arm64:
|
||||||
runs-on: windows-4x-arm
|
# name: lancedb win32-arm64-msvc
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
# runs-on: windows-4x-arm
|
||||||
steps:
|
# if: startsWith(github.ref, 'refs/tags/v')
|
||||||
- uses: actions/checkout@v4
|
# steps:
|
||||||
- name: Install Git
|
# - uses: actions/checkout@v4
|
||||||
run: |
|
# - name: Install Git
|
||||||
Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
# run: |
|
||||||
Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
# Invoke-WebRequest -Uri "https://github.com/git-for-windows/git/releases/download/v2.44.0.windows.1/Git-2.44.0-64-bit.exe" -OutFile "git-installer.exe"
|
||||||
shell: powershell
|
# Start-Process -FilePath "git-installer.exe" -ArgumentList "/VERYSILENT", "/NORESTART" -Wait
|
||||||
- name: Add Git to PATH
|
# shell: powershell
|
||||||
run: |
|
# - name: Add Git to PATH
|
||||||
Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
# run: |
|
||||||
$env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
# Add-Content $env:GITHUB_PATH "C:\Program Files\Git\bin"
|
||||||
shell: powershell
|
# $env:Path = [System.Environment]::GetEnvironmentVariable("Path","Machine") + ";" + [System.Environment]::GetEnvironmentVariable("Path","User")
|
||||||
- name: Configure Git symlinks
|
# shell: powershell
|
||||||
run: git config --global core.symlinks true
|
# - name: Configure Git symlinks
|
||||||
- uses: actions/checkout@v4
|
# run: git config --global core.symlinks true
|
||||||
- uses: actions/setup-python@v5
|
# - uses: actions/checkout@v4
|
||||||
with:
|
# - uses: actions/setup-python@v5
|
||||||
python-version: "3.13"
|
# with:
|
||||||
- name: Install Visual Studio Build Tools
|
# python-version: "3.13"
|
||||||
run: |
|
# - name: Install Visual Studio Build Tools
|
||||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
# run: |
|
||||||
Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
# Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vs_buildtools.exe" -OutFile "vs_buildtools.exe"
|
||||||
"--installPath", "C:\BuildTools", `
|
# Start-Process -FilePath "vs_buildtools.exe" -ArgumentList "--quiet", "--wait", "--norestart", "--nocache", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
# "--installPath", "C:\BuildTools", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.ARM64", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
# "--add", "Microsoft.VisualStudio.Component.VC.Tools.x86.x64", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
# "--add", "Microsoft.VisualStudio.Component.Windows11SDK.22621", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
# "--add", "Microsoft.VisualStudio.Component.VC.ATL", `
|
||||||
"--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
# "--add", "Microsoft.VisualStudio.Component.VC.ATLMFC", `
|
||||||
shell: powershell
|
# "--add", "Microsoft.VisualStudio.Component.VC.Llvm.Clang" -Wait
|
||||||
- name: Add Visual Studio Build Tools to PATH
|
# shell: powershell
|
||||||
run: |
|
# - name: Add Visual Studio Build Tools to PATH
|
||||||
$vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
# run: |
|
||||||
$latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
# $vsPath = "C:\BuildTools\VC\Tools\MSVC"
|
||||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
# $latestVersion = (Get-ChildItem $vsPath | Sort-Object {[version]$_.Name} -Descending)[0].Name
|
||||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\arm64"
|
||||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\MSVC\$latestVersion\bin\Hostx64\x64"
|
||||||
Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\arm64"
|
||||||
Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
# Add-Content $env:GITHUB_PATH "C:\Program Files (x86)\Windows Kits\10\bin\10.0.22621.0\x64"
|
||||||
|
# Add-Content $env:GITHUB_PATH "C:\BuildTools\VC\Tools\Llvm\x64\bin"
|
||||||
|
|
||||||
$env:LIB = ""
|
# $env:LIB = ""
|
||||||
Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
# Add-Content $env:GITHUB_ENV "LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\arm64;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\arm64"
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Install Rust
|
# - name: Install Rust
|
||||||
run: |
|
# run: |
|
||||||
Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
# Invoke-WebRequest https://win.rustup.rs/x86_64 -OutFile rustup-init.exe
|
||||||
.\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
# .\rustup-init.exe -y --default-host aarch64-pc-windows-msvc
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Add Rust to PATH
|
# - name: Add Rust to PATH
|
||||||
run: |
|
# run: |
|
||||||
Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
# Add-Content $env:GITHUB_PATH "$env:USERPROFILE\.cargo\bin"
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
|
|
||||||
- uses: Swatinem/rust-cache@v2
|
# - uses: Swatinem/rust-cache@v2
|
||||||
with:
|
# with:
|
||||||
workspaces: rust
|
# workspaces: rust
|
||||||
- name: Install 7-Zip ARM
|
# - name: Install 7-Zip ARM
|
||||||
run: |
|
# run: |
|
||||||
New-Item -Path 'C:\7zip' -ItemType Directory
|
# New-Item -Path 'C:\7zip' -ItemType Directory
|
||||||
Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
# Invoke-WebRequest https://7-zip.org/a/7z2408-arm64.exe -OutFile C:\7zip\7z-installer.exe
|
||||||
Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
# Start-Process -FilePath C:\7zip\7z-installer.exe -ArgumentList '/S' -Wait
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Add 7-Zip to PATH
|
# - name: Add 7-Zip to PATH
|
||||||
run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
# run: Add-Content $env:GITHUB_PATH "C:\Program Files\7-Zip"
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Install Protoc v21.12
|
# - name: Install Protoc v21.12
|
||||||
working-directory: C:\
|
# working-directory: C:\
|
||||||
run: |
|
# run: |
|
||||||
if (Test-Path 'C:\protoc') {
|
# if (Test-Path 'C:\protoc') {
|
||||||
Write-Host "Protoc directory exists, skipping installation"
|
# Write-Host "Protoc directory exists, skipping installation"
|
||||||
return
|
# return
|
||||||
}
|
# }
|
||||||
New-Item -Path 'C:\protoc' -ItemType Directory
|
# New-Item -Path 'C:\protoc' -ItemType Directory
|
||||||
Set-Location C:\protoc
|
# Set-Location C:\protoc
|
||||||
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
# Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
|
||||||
& 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
# & 'C:\Program Files\7-Zip\7z.exe' x protoc.zip
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Add Protoc to PATH
|
# - name: Add Protoc to PATH
|
||||||
run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
# run: Add-Content $env:GITHUB_PATH "C:\protoc\bin"
|
||||||
shell: powershell
|
# shell: powershell
|
||||||
- name: Build Windows native node modules
|
# - name: Build Windows native node modules
|
||||||
run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
|
# run: .\ci\build_windows_artifacts_nodejs.ps1 aarch64-pc-windows-msvc
|
||||||
- name: Upload Windows ARM64 Artifacts
|
# - name: Upload Windows ARM64 Artifacts
|
||||||
uses: actions/upload-artifact@v4
|
# uses: actions/upload-artifact@v4
|
||||||
with:
|
# with:
|
||||||
name: nodejs-native-windows-arm64
|
# name: nodejs-native-windows-arm64
|
||||||
path: |
|
# path: |
|
||||||
nodejs/dist/*.node
|
# nodejs/dist/*.node
|
||||||
|
|
||||||
release:
|
release:
|
||||||
name: vectordb NPM Publish
|
name: vectordb NPM Publish
|
||||||
needs: [node, node-macos, node-linux, node-windows, node-windows-arm64]
|
needs: [node, node-macos, node-linux-gnu, node-linux-musl, node-windows]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -498,7 +608,7 @@ jobs:
|
|||||||
|
|
||||||
release-nodejs:
|
release-nodejs:
|
||||||
name: lancedb NPM Publish
|
name: lancedb NPM Publish
|
||||||
needs: [nodejs-macos, nodejs-linux, nodejs-windows, nodejs-windows-arm64]
|
needs: [nodejs-macos, nodejs-linux-gnu, nodejs-linux-musl, nodejs-windows]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
|
|||||||
16
Cargo.toml
16
Cargo.toml
@@ -21,15 +21,15 @@ categories = ["database-implementations"]
|
|||||||
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
|
rust-version = "1.80.0" # TODO: lower this once we upgrade Lance again.
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
lance = { "version" = "=0.19.2", "features" = [
|
lance = { "version" = "=0.20.0", "features" = [
|
||||||
"dynamodb",
|
"dynamodb",
|
||||||
], git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
], git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||||
lance-index = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
lance-index = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||||
lance-linalg = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
lance-linalg = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||||
lance-table = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
lance-table = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||||
lance-testing = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
lance-testing = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||||
lance-datafusion = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
lance-datafusion = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||||
lance-encoding = { "version" = "=0.19.2", git = "https://github.com/lancedb/lance.git", tag = "v0.19.2" }
|
lance-encoding = { version = "=0.20.0", git = "https://github.com/lancedb/lance.git", tag = "v0.20.0-beta.2" }
|
||||||
# Note that this one does not include pyarrow
|
# Note that this one does not include pyarrow
|
||||||
arrow = { version = "52.2", optional = false }
|
arrow = { version = "52.2", optional = false }
|
||||||
arrow-array = "52.2"
|
arrow-array = "52.2"
|
||||||
|
|||||||
@@ -11,7 +11,8 @@ fi
|
|||||||
export OPENSSL_STATIC=1
|
export OPENSSL_STATIC=1
|
||||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||||
|
|
||||||
source $HOME/.bashrc
|
#Alpine doesn't have .bashrc
|
||||||
|
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||||
|
|
||||||
cd nodejs
|
cd nodejs
|
||||||
npm ci
|
npm ci
|
||||||
|
|||||||
@@ -11,7 +11,8 @@ fi
|
|||||||
export OPENSSL_STATIC=1
|
export OPENSSL_STATIC=1
|
||||||
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
|
||||||
|
|
||||||
source $HOME/.bashrc
|
#Alpine doesn't have .bashrc
|
||||||
|
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
|
||||||
|
|
||||||
cd node
|
cd node
|
||||||
npm ci
|
npm ci
|
||||||
|
|||||||
@@ -138,6 +138,7 @@ nav:
|
|||||||
- Jina Reranker: reranking/jina.md
|
- Jina Reranker: reranking/jina.md
|
||||||
- OpenAI Reranker: reranking/openai.md
|
- OpenAI Reranker: reranking/openai.md
|
||||||
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
- AnswerDotAi Rerankers: reranking/answerdotai.md
|
||||||
|
- Voyage AI Rerankers: reranking/voyageai.md
|
||||||
- Building Custom Rerankers: reranking/custom_reranker.md
|
- Building Custom Rerankers: reranking/custom_reranker.md
|
||||||
- Example: notebooks/lancedb_reranking.ipynb
|
- Example: notebooks/lancedb_reranking.ipynb
|
||||||
- Filtering: sql.md
|
- Filtering: sql.md
|
||||||
@@ -165,6 +166,7 @@ nav:
|
|||||||
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
|
||||||
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
|
||||||
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
|
||||||
|
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
|
||||||
- Multimodal Embedding Functions:
|
- Multimodal Embedding Functions:
|
||||||
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
|
||||||
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
|
||||||
|
|||||||
21
docs/package-lock.json
generated
21
docs/package-lock.json
generated
@@ -19,7 +19,7 @@
|
|||||||
},
|
},
|
||||||
"../node": {
|
"../node": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.4.6",
|
"version": "0.12.0",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -31,9 +31,7 @@
|
|||||||
"win32"
|
"win32"
|
||||||
],
|
],
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@apache-arrow/ts": "^14.0.2",
|
|
||||||
"@neon-rs/load": "^0.0.74",
|
"@neon-rs/load": "^0.0.74",
|
||||||
"apache-arrow": "^14.0.2",
|
|
||||||
"axios": "^1.4.0"
|
"axios": "^1.4.0"
|
||||||
},
|
},
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
@@ -46,6 +44,7 @@
|
|||||||
"@types/temp": "^0.9.1",
|
"@types/temp": "^0.9.1",
|
||||||
"@types/uuid": "^9.0.3",
|
"@types/uuid": "^9.0.3",
|
||||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||||
|
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||||
"cargo-cp-artifact": "^0.1",
|
"cargo-cp-artifact": "^0.1",
|
||||||
"chai": "^4.3.7",
|
"chai": "^4.3.7",
|
||||||
"chai-as-promised": "^7.1.1",
|
"chai-as-promised": "^7.1.1",
|
||||||
@@ -62,15 +61,19 @@
|
|||||||
"ts-node-dev": "^2.0.0",
|
"ts-node-dev": "^2.0.0",
|
||||||
"typedoc": "^0.24.7",
|
"typedoc": "^0.24.7",
|
||||||
"typedoc-plugin-markdown": "^3.15.3",
|
"typedoc-plugin-markdown": "^3.15.3",
|
||||||
"typescript": "*",
|
"typescript": "^5.1.0",
|
||||||
"uuid": "^9.0.0"
|
"uuid": "^9.0.0"
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.4.6",
|
"@lancedb/vectordb-darwin-arm64": "0.12.0",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.4.6",
|
"@lancedb/vectordb-darwin-x64": "0.12.0",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
|
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
|
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
|
||||||
|
},
|
||||||
|
"peerDependencies": {
|
||||||
|
"@apache-arrow/ts": "^14.0.2",
|
||||||
|
"apache-arrow": "^14.0.2"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"../node/node_modules/apache-arrow": {
|
"../node/node_modules/apache-arrow": {
|
||||||
|
|||||||
@@ -277,7 +277,15 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
|
|||||||
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
|
||||||
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
|
||||||
|
|
||||||
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
|
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
|
||||||
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
|
||||||
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
|
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||||
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
|
||||||
|
!!! note
|
||||||
|
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
|
||||||
|
|
||||||
|
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
|
||||||
|
|
||||||
|
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
|
||||||
|
|
||||||
|
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
|
||||||
@@ -57,6 +57,13 @@ Then the greedy search routine operates as follows:
|
|||||||
|
|
||||||
## Usage
|
## Usage
|
||||||
|
|
||||||
|
There are three key parameters to set when constructing an HNSW index:
|
||||||
|
|
||||||
|
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
|
||||||
|
* `m`: The number of neighbors to select for each vector in the HNSW graph.
|
||||||
|
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
|
||||||
|
|
||||||
|
|
||||||
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
|
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
|
||||||
|
|
||||||
### Construct index
|
### Construct index
|
||||||
|
|||||||
@@ -58,8 +58,10 @@ In Python, the index can be created as follows:
|
|||||||
# Make sure you have enough data in the table for an effective training step
|
# Make sure you have enough data in the table for an effective training step
|
||||||
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
|
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
|
||||||
```
|
```
|
||||||
|
!!! note
|
||||||
|
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
|
||||||
|
|
||||||
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
|
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
|
||||||
|
|
||||||
|
|
||||||
### Query the index
|
### Query the index
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ Supported parameters (to be passed in `create` method) are:
|
|||||||
|
|
||||||
| Parameter | Type | Default Value | Description |
|
| Parameter | Type | Default Value | Description |
|
||||||
|---|---|--------|---------|
|
|---|---|--------|---------|
|
||||||
| `name` | `str` | `"voyage-3"` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
|
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
|
||||||
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
|
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
|
||||||
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
|
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
|
||||||
|
|
||||||
|
|||||||
@@ -53,6 +53,7 @@ These functions are registered by default to handle text embeddings.
|
|||||||
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
|
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
|
||||||
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
|
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
|
||||||
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
|
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
|
||||||
|
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -66,6 +67,7 @@ These functions are registered by default to handle text embeddings.
|
|||||||
[jina-key]: "jina"
|
[jina-key]: "jina"
|
||||||
[aws-key]: "bedrock-text"
|
[aws-key]: "bedrock-text"
|
||||||
[watsonx-key]: "watsonx"
|
[watsonx-key]: "watsonx"
|
||||||
|
[voyageai-key]: "voyageai"
|
||||||
|
|
||||||
|
|
||||||
## Multi-modal Embedding Functions🖼️
|
## Multi-modal Embedding Functions🖼️
|
||||||
|
|||||||
@@ -114,12 +114,45 @@ table.create_fts_index("text",
|
|||||||
|
|
||||||
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
|
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
|
||||||
|
|
||||||
This can be invoked via the familiar `where` syntax:
|
This can be invoked via the familiar `where` syntax.
|
||||||
|
|
||||||
|
With pre-filtering:
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
table.search("puppy").limit(10).where("meta='foo'", prefilte=True).to_list()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
await tbl
|
||||||
|
.search("puppy")
|
||||||
|
.select(["id", "doc"])
|
||||||
|
.limit(10)
|
||||||
|
.where("meta='foo'")
|
||||||
|
.prefilter(true)
|
||||||
|
.toArray();
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
table
|
||||||
|
.query()
|
||||||
|
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
|
||||||
|
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||||
|
.limit(10)
|
||||||
|
.only_if("meta='foo'")
|
||||||
|
.execute()
|
||||||
|
.await?;
|
||||||
|
```
|
||||||
|
|
||||||
|
With post-filtering:
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.search("puppy").limit(10).where("meta='foo'", prefilte=False).to_list()
|
||||||
```
|
```
|
||||||
|
|
||||||
=== "TypeScript"
|
=== "TypeScript"
|
||||||
@@ -130,6 +163,7 @@ This can be invoked via the familiar `where` syntax:
|
|||||||
.select(["id", "doc"])
|
.select(["id", "doc"])
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.where("meta='foo'")
|
.where("meta='foo'")
|
||||||
|
.prefilter(false)
|
||||||
.toArray();
|
.toArray();
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -140,6 +174,7 @@ This can be invoked via the familiar `where` syntax:
|
|||||||
.query()
|
.query()
|
||||||
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||||
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||||
|
.postfilter()
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.only_if("meta='foo'")
|
.only_if("meta='foo'")
|
||||||
.execute()
|
.execute()
|
||||||
@@ -160,3 +195,35 @@ To search for a phrase, the index must be created with `with_position=True`:
|
|||||||
table.create_fts_index("text", use_tantivy=False, with_position=True)
|
table.create_fts_index("text", use_tantivy=False, with_position=True)
|
||||||
```
|
```
|
||||||
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
|
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
|
||||||
|
|
||||||
|
|
||||||
|
## Incremental indexing
|
||||||
|
|
||||||
|
LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.
|
||||||
|
|
||||||
|
This can make the query more efficient, especially when the table is large and the new records are relatively small.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
|
||||||
|
table.optimize()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
|
||||||
|
await tbl.optimize();
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||||
|
tbl.add(more_data).execute().await?;
|
||||||
|
tbl.optimize(OptimizeAction::All).execute().await?;
|
||||||
|
```
|
||||||
|
!!! note
|
||||||
|
|
||||||
|
New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||||
@@ -153,9 +153,7 @@ table.create_fts_index(["title", "content"], use_tantivy=True, writer_heap_size=
|
|||||||
|
|
||||||
## Current limitations
|
## Current limitations
|
||||||
|
|
||||||
1. Currently we do not yet support incremental writes.
|
1. New data added after creating the FTS index will appear in search results, but with increased latency due to a flat search on the unindexed portion. Re-indexing with `create_fts_index` will reduce latency. LanceDB Cloud automates this merging process, minimizing the impact on search speed.
|
||||||
If you add data after FTS index creation, it won't be reflected
|
|
||||||
in search results until you do a full reindex.
|
|
||||||
|
|
||||||
2. We currently only support local filesystem paths for the FTS index.
|
2. We currently only support local filesystem paths for the FTS index.
|
||||||
This is a tantivy limitation. We've implemented an object store plugin
|
This is a tantivy limitation. We've implemented an object store plugin
|
||||||
|
|||||||
@@ -1,23 +1,35 @@
|
|||||||
# Building Scalar Index
|
# Building a Scalar Index
|
||||||
|
|
||||||
Similar to many SQL databases, LanceDB supports several types of Scalar indices to accelerate search
|
Scalar indices organize data by scalar attributes (e.g. numbers, categorical values), enabling fast filtering of vector data. In vector databases, scalar indices accelerate the retrieval of scalar data associated with vectors, thus enhancing the query performance when searching for vectors that meet certain scalar criteria.
|
||||||
|
|
||||||
|
Similar to many SQL databases, LanceDB supports several types of scalar indices to accelerate search
|
||||||
over scalar columns.
|
over scalar columns.
|
||||||
|
|
||||||
- `BTREE`: The most common type is BTREE. This index is inspired by the btree data structure
|
- `BTREE`: The most common type is BTREE. The index stores a copy of the
|
||||||
although only the first few layers of the btree are cached in memory.
|
column in sorted order. This sorted copy allows a binary search to be used to
|
||||||
It will perform well on columns with a large number of unique values and few rows per value.
|
satisfy queries.
|
||||||
- `BITMAP`: this index stores a bitmap for each unique value in the column.
|
- `BITMAP`: this index stores a bitmap for each unique value in the column. It
|
||||||
This index is useful for columns with a finite number of unique values and many rows per value.
|
uses a series of bits to indicate whether a value is present in a row of a table
|
||||||
For example, columns that represent "categories", "labels", or "tags"
|
- `LABEL_LIST`: a special index that can be used on `List<T>` columns to
|
||||||
- `LABEL_LIST`: a special index that is used to index list columns whose values have a finite set of possibilities.
|
support queries with `array_contains_all` and `array_contains_any`
|
||||||
|
using an underlying bitmap index.
|
||||||
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
|
For example, a column that contains lists of tags (e.g. `["tag1", "tag2", "tag3"]`) can be indexed with a `LABEL_LIST` index.
|
||||||
|
|
||||||
|
!!! tips "How to choose the right scalar index type"
|
||||||
|
|
||||||
|
`BTREE`: This index is good for scalar columns with mostly distinct values and does best when the query is highly selective.
|
||||||
|
|
||||||
|
`BITMAP`: This index works best for low-cardinality numeric or string columns, where the number of unique values is small (i.e., less than a few thousands).
|
||||||
|
|
||||||
|
`LABEL_LIST`: This index should be used for columns containing list-type data.
|
||||||
|
|
||||||
| Data Type | Filter | Index Type |
|
| Data Type | Filter | Index Type |
|
||||||
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
|
| --------------------------------------------------------------- | ----------------------------------------- | ------------ |
|
||||||
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
|
| Numeric, String, Temporal | `<`, `=`, `>`, `in`, `between`, `is null` | `BTREE` |
|
||||||
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
|
| Boolean, numbers or strings with fewer than 1,000 unique values | `<`, `=`, `>`, `in`, `between`, `is null` | `BITMAP` |
|
||||||
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
|
| List of low cardinality of numbers or strings | `array_has_any`, `array_has_all` | `LABEL_LIST` |
|
||||||
|
|
||||||
|
### Create a scalar index
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
```python
|
```python
|
||||||
@@ -46,7 +58,7 @@ over scalar columns.
|
|||||||
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
|
await tlb.create_index("publisher", { config: lancedb.Index.bitmap() })
|
||||||
```
|
```
|
||||||
|
|
||||||
For example, the following scan will be faster if the column `my_col` has a scalar index:
|
The following scan will be faster if the column `book_id` has a scalar index:
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
|
|
||||||
@@ -106,3 +118,30 @@ Scalar indices can also speed up scans containing a vector search or full text s
|
|||||||
.limit(10)
|
.limit(10)
|
||||||
.toArray();
|
.toArray();
|
||||||
```
|
```
|
||||||
|
### Update a scalar index
|
||||||
|
Updating the table data (adding, deleting, or modifying records) requires that you also update the scalar index. This can be done by calling `optimize`, which will trigger an update to the existing scalar index.
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.add([{"vector": [7, 8], "book_id": 4}])
|
||||||
|
table.optimize()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
await tbl.add([{ vector: [7, 8], book_id: 4 }]);
|
||||||
|
await tbl.optimize();
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||||
|
tbl.add(more_data).execute().await?;
|
||||||
|
tbl.optimize(OptimizeAction::All).execute().await?;
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
|
||||||
|
New data added after creating the scalar index will still appear in search results if optimize is not used, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates the optimize process, minimizing the impact on search speed.
|
||||||
@@ -274,7 +274,7 @@ table = db.create_table(table_name, schema=Content)
|
|||||||
|
|
||||||
Sometimes your data model may contain nested objects.
|
Sometimes your data model may contain nested objects.
|
||||||
For example, you may want to store the document string
|
For example, you may want to store the document string
|
||||||
and the document soure name as a nested Document object:
|
and the document source name as a nested Document object:
|
||||||
|
|
||||||
```python
|
```python
|
||||||
class Document(BaseModel):
|
class Document(BaseModel):
|
||||||
@@ -466,7 +466,7 @@ You can create an empty table for scenarios where you want to add data to the ta
|
|||||||
|
|
||||||
## Adding to a table
|
## Adding to a table
|
||||||
|
|
||||||
After a table has been created, you can always add more data to it usind the `add` method
|
After a table has been created, you can always add more data to it using the `add` method
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
|
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or `Iterator[pa.RecordBatch]`. Below are some examples.
|
||||||
@@ -535,7 +535,7 @@ After a table has been created, you can always add more data to it usind the `ad
|
|||||||
```
|
```
|
||||||
|
|
||||||
??? "Ingesting Pydantic models with LanceDB embedding API"
|
??? "Ingesting Pydantic models with LanceDB embedding API"
|
||||||
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` feild as None to allow LanceDB to automatically vectorize the data.
|
When using LanceDB's embedding API, you can add Pydantic models directly to the table. LanceDB will automatically convert the `vector` field to a vector before adding it to the table. You need to specify the default value of `vector` field as None to allow LanceDB to automatically vectorize the data.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
@@ -790,6 +790,27 @@ Use the `drop_table()` method on the database to remove a table.
|
|||||||
This permanently removes the table and is not recoverable, unlike deleting rows.
|
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||||
If the table does not exist an exception is raised.
|
If the table does not exist an exception is raised.
|
||||||
|
|
||||||
|
## Handling bad vectors
|
||||||
|
|
||||||
|
In LanceDB Python, you can use the `on_bad_vectors` parameter to choose how
|
||||||
|
invalid vector values are handled. Invalid vectors are vectors that are not valid
|
||||||
|
because:
|
||||||
|
|
||||||
|
1. They are the wrong dimension
|
||||||
|
2. They contain NaN values
|
||||||
|
3. They are null but are on a non-nullable field
|
||||||
|
|
||||||
|
By default, LanceDB will raise an error if it encounters a bad vector. You can
|
||||||
|
also choose one of the following options:
|
||||||
|
|
||||||
|
* `drop`: Ignore rows with bad vectors
|
||||||
|
* `fill`: Replace bad values (NaNs) or missing values (too few dimensions) with
|
||||||
|
the fill value specified in the `fill_value` parameter. An input like
|
||||||
|
`[1.0, NaN, 3.0]` will be replaced with `[1.0, 0.0, 3.0]` if `fill_value=0.0`.
|
||||||
|
* `null`: Replace bad vectors with null (only works if the column is nullable).
|
||||||
|
A bad vector `[1.0, NaN, 3.0]` will be replaced with `null` if the column is
|
||||||
|
nullable. If the vector column is non-nullable, then bad vectors will cause an
|
||||||
|
error
|
||||||
|
|
||||||
## Consistency
|
## Consistency
|
||||||
|
|
||||||
@@ -859,4 +880,4 @@ There are three possible settings for `read_consistency_interval`:
|
|||||||
|
|
||||||
Learn the best practices on creating an ANN index and getting the most out of it.
|
Learn the best practices on creating an ANN index and getting the most out of it.
|
||||||
|
|
||||||
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.
|
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](../migration.md) for more information.
|
||||||
|
|||||||
@@ -6,6 +6,9 @@ This re-ranker uses the [Cohere](https://cohere.ai/) API to rerank the search re
|
|||||||
!!! note
|
!!! note
|
||||||
Supported Query Types: Hybrid, Vector, FTS
|
Supported Query Types: Hybrid, Vector, FTS
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install cohere
|
||||||
|
```
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import numpy
|
import numpy
|
||||||
|
|||||||
@@ -9,6 +9,7 @@ LanceDB comes with some built-in rerankers. Some of the rerankers that are avail
|
|||||||
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
|
| `CrossEncoderReranker` | Uses a cross-encoder model to rerank search results | Vector, FTS, Hybrid |
|
||||||
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
|
| `ColbertReranker` | Uses a colbert model to rerank search results | Vector, FTS, Hybrid |
|
||||||
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
|
| `OpenaiReranker`(Experimental) | Uses OpenAI's chat model to rerank search results | Vector, FTS, Hybrid |
|
||||||
|
| `VoyageAIReranker` | Uses voyageai Reranker API to rerank results | Vector, FTS, Hybrid |
|
||||||
|
|
||||||
|
|
||||||
## Using a Reranker
|
## Using a Reranker
|
||||||
@@ -73,6 +74,7 @@ LanceDB comes with some built-in rerankers. Here are some of the rerankers that
|
|||||||
- [Jina Reranker](./jina.md)
|
- [Jina Reranker](./jina.md)
|
||||||
- [AnswerDotAI Rerankers](./answerdotai.md)
|
- [AnswerDotAI Rerankers](./answerdotai.md)
|
||||||
- [Reciprocal Rank Fusion Reranker](./rrf.md)
|
- [Reciprocal Rank Fusion Reranker](./rrf.md)
|
||||||
|
- [VoyageAI Reranker](./voyageai.md)
|
||||||
|
|
||||||
## Creating Custom Rerankers
|
## Creating Custom Rerankers
|
||||||
|
|
||||||
|
|||||||
@@ -7,6 +7,10 @@ performed on the top-k results returned by the vector search. However, pre-filte
|
|||||||
option that performs the filter prior to vector search. This can be useful to narrow down on
|
option that performs the filter prior to vector search. This can be useful to narrow down on
|
||||||
the search space on a very large dataset to reduce query latency.
|
the search space on a very large dataset to reduce query latency.
|
||||||
|
|
||||||
|
Note that both pre-filtering and post-filtering can yield false positives. For pre-filtering, if the filter is too selective, it might eliminate relevant items that the vector search would have otherwise identified as a good match. In this case, increasing `nprobes` parameter will help reduce such false positives. It is recommended to set `use_index=false` if you know that the filter is highly selective.
|
||||||
|
|
||||||
|
Similarly, a highly selective post-filter can lead to false positives. Increasing both `nprobes` and `refine_factor` can mitigate this issue. When deciding between pre-filtering and post-filtering, pre-filtering is generally the safer choice if you're uncertain.
|
||||||
|
|
||||||
<!-- Setup Code
|
<!-- Setup Code
|
||||||
```python
|
```python
|
||||||
import lancedb
|
import lancedb
|
||||||
@@ -57,6 +61,9 @@ const tbl = await db.createTable('myVectors', data)
|
|||||||
```ts
|
```ts
|
||||||
--8<-- "docs/src/sql_legacy.ts:search"
|
--8<-- "docs/src/sql_legacy.ts:search"
|
||||||
```
|
```
|
||||||
|
!!! note
|
||||||
|
|
||||||
|
Creating a [scalar index](guides/scalar_index.md) accelerates filtering
|
||||||
|
|
||||||
## SQL filters
|
## SQL filters
|
||||||
|
|
||||||
|
|||||||
@@ -8,7 +8,7 @@
|
|||||||
<parent>
|
<parent>
|
||||||
<groupId>com.lancedb</groupId>
|
<groupId>com.lancedb</groupId>
|
||||||
<artifactId>lancedb-parent</artifactId>
|
<artifactId>lancedb-parent</artifactId>
|
||||||
<version>0.13.0-beta.1</version>
|
<version>0.13.1-beta.0</version>
|
||||||
<relativePath>../pom.xml</relativePath>
|
<relativePath>../pom.xml</relativePath>
|
||||||
</parent>
|
</parent>
|
||||||
|
|
||||||
|
|||||||
@@ -6,7 +6,7 @@
|
|||||||
|
|
||||||
<groupId>com.lancedb</groupId>
|
<groupId>com.lancedb</groupId>
|
||||||
<artifactId>lancedb-parent</artifactId>
|
<artifactId>lancedb-parent</artifactId>
|
||||||
<version>0.13.0-beta.1</version>
|
<version>0.13.1-beta.0</version>
|
||||||
<packaging>pom</packaging>
|
<packaging>pom</packaging>
|
||||||
|
|
||||||
<name>LanceDB Parent</name>
|
<name>LanceDB Parent</name>
|
||||||
|
|||||||
84
node/package-lock.json
generated
84
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"lockfileVersion": 3,
|
"lockfileVersion": 3,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -52,12 +52,14 @@
|
|||||||
"uuid": "^9.0.0"
|
"uuid": "^9.0.0"
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
|
"@lancedb/vectordb-darwin-arm64": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
|
"@lancedb/vectordb-darwin-x64": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
|
"@lancedb/vectordb-linux-arm64-musl": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1",
|
"@lancedb/vectordb-linux-x64-gnu": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1"
|
"@lancedb/vectordb-linux-x64-musl": "0.13.1-beta.0",
|
||||||
|
"@lancedb/vectordb-win32-arm64-msvc": "0.13.1-beta.0",
|
||||||
|
"@lancedb/vectordb-win32-x64-msvc": "0.13.1-beta.0"
|
||||||
},
|
},
|
||||||
"peerDependencies": {
|
"peerDependencies": {
|
||||||
"@apache-arrow/ts": "^14.0.2",
|
"@apache-arrow/ts": "^14.0.2",
|
||||||
@@ -327,66 +329,6 @@
|
|||||||
"@jridgewell/sourcemap-codec": "^1.4.10"
|
"@jridgewell/sourcemap-codec": "^1.4.10"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
|
||||||
"version": "0.13.0-beta.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.13.0-beta.1.tgz",
|
|
||||||
"integrity": "sha512-beOrf6selCzzhLgDG8Nibma4nO/CSnA1wUKRmlJHEPtGcg7PW18z6MP/nfwQMpMR/FLRfTo8pPTbpzss47MiQQ==",
|
|
||||||
"cpu": [
|
|
||||||
"arm64"
|
|
||||||
],
|
|
||||||
"optional": true,
|
|
||||||
"os": [
|
|
||||||
"darwin"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
|
||||||
"version": "0.13.0-beta.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.13.0-beta.1.tgz",
|
|
||||||
"integrity": "sha512-YdraGRF/RbJRkKh0v3xT03LUhq47T2GtCvJ5gZp8wKlh4pHa8LuhLU0DIdvmG/DT5vuQA+td8HDkBm/e3EOdNg==",
|
|
||||||
"cpu": [
|
|
||||||
"x64"
|
|
||||||
],
|
|
||||||
"optional": true,
|
|
||||||
"os": [
|
|
||||||
"darwin"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
|
||||||
"version": "0.13.0-beta.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.13.0-beta.1.tgz",
|
|
||||||
"integrity": "sha512-Pp0O/uhEqof1oLaWrNbv+Ym+q8kBkiCqaA5+2eAZ6a3e9U+Ozkvb0FQrHuyi9adJ5wKQ4NabyQE9BMf2bYpOnQ==",
|
|
||||||
"cpu": [
|
|
||||||
"arm64"
|
|
||||||
],
|
|
||||||
"optional": true,
|
|
||||||
"os": [
|
|
||||||
"linux"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
|
||||||
"version": "0.13.0-beta.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.13.0-beta.1.tgz",
|
|
||||||
"integrity": "sha512-y8nxOye4egfWF5FGED9EfkmZ1O5HnRLU4a61B8m5JSpkivO9v2epTcbYN0yt/7ZFCgtqMfJ8VW4Mi7qQcz3KDA==",
|
|
||||||
"cpu": [
|
|
||||||
"x64"
|
|
||||||
],
|
|
||||||
"optional": true,
|
|
||||||
"os": [
|
|
||||||
"linux"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
|
||||||
"version": "0.13.0-beta.1",
|
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.13.0-beta.1.tgz",
|
|
||||||
"integrity": "sha512-STMDP9dp0TBLkB3ro+16pKcGy6bmbhRuEZZZ1Tp5P75yTPeVh4zIgWkidMdU1qBbEYM7xacnsp9QAwgLnMU/Ow==",
|
|
||||||
"cpu": [
|
|
||||||
"x64"
|
|
||||||
],
|
|
||||||
"optional": true,
|
|
||||||
"os": [
|
|
||||||
"win32"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
"node_modules/@neon-rs/cli": {
|
"node_modules/@neon-rs/cli": {
|
||||||
"version": "0.0.160",
|
"version": "0.0.160",
|
||||||
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",
|
||||||
@@ -1501,9 +1443,9 @@
|
|||||||
"dev": true
|
"dev": true
|
||||||
},
|
},
|
||||||
"node_modules/cross-spawn": {
|
"node_modules/cross-spawn": {
|
||||||
"version": "7.0.3",
|
"version": "7.0.6",
|
||||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
|
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
|
||||||
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
|
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
|
||||||
"dev": true,
|
"dev": true,
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"path-key": "^3.1.0",
|
"path-key": "^3.1.0",
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
@@ -84,16 +84,20 @@
|
|||||||
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
|
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64",
|
||||||
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
|
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu",
|
||||||
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
|
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu",
|
||||||
|
"x86_64-unknown-linux-musl": "@lancedb/vectordb-linux-x64-musl",
|
||||||
|
"aarch64-unknown-linux-musl": "@lancedb/vectordb-linux-arm64-musl",
|
||||||
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc",
|
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc",
|
||||||
"aarch64-pc-windows-msvc": "@lancedb/vectordb-win32-arm64-msvc"
|
"aarch64-pc-windows-msvc": "@lancedb/vectordb-win32-arm64-msvc"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.13.0-beta.1",
|
"@lancedb/vectordb-darwin-x64": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.13.0-beta.1",
|
"@lancedb/vectordb-darwin-arm64": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.13.0-beta.1",
|
"@lancedb/vectordb-linux-x64-gnu": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.13.0-beta.1",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.13.0-beta.1",
|
"@lancedb/vectordb-linux-x64-musl": "0.13.1-beta.0",
|
||||||
"@lancedb/vectordb-win32-arm64-msvc": "0.13.0-beta.1"
|
"@lancedb/vectordb-linux-arm64-musl": "0.13.1-beta.0",
|
||||||
|
"@lancedb/vectordb-win32-x64-msvc": "0.13.1-beta.0",
|
||||||
|
"@lancedb/vectordb-win32-arm64-msvc": "0.13.1-beta.0"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,7 +1,7 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "lancedb-nodejs"
|
name = "lancedb-nodejs"
|
||||||
edition.workspace = true
|
edition.workspace = true
|
||||||
version = "0.13.0-beta.1"
|
version = "0.13.1-beta.0"
|
||||||
license.workspace = true
|
license.workspace = true
|
||||||
description.workspace = true
|
description.workspace = true
|
||||||
repository.workspace = true
|
repository.workspace = true
|
||||||
|
|||||||
@@ -187,6 +187,81 @@ describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
|||||||
},
|
},
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// TODO: https://github.com/lancedb/lancedb/issues/1832
|
||||||
|
it.skip("should be able to omit nullable fields", async () => {
|
||||||
|
const db = await connect(tmpDir.name);
|
||||||
|
const schema = new arrow.Schema([
|
||||||
|
new arrow.Field(
|
||||||
|
"vector",
|
||||||
|
new arrow.FixedSizeList(
|
||||||
|
2,
|
||||||
|
new arrow.Field("item", new arrow.Float64()),
|
||||||
|
),
|
||||||
|
true,
|
||||||
|
),
|
||||||
|
new arrow.Field("item", new arrow.Utf8(), true),
|
||||||
|
new arrow.Field("price", new arrow.Float64(), false),
|
||||||
|
]);
|
||||||
|
const table = await db.createEmptyTable("test", schema);
|
||||||
|
|
||||||
|
const data1 = { item: "foo", price: 10.0 };
|
||||||
|
await table.add([data1]);
|
||||||
|
const data2 = { vector: [3.1, 4.1], price: 2.0 };
|
||||||
|
await table.add([data2]);
|
||||||
|
const data3 = { vector: [5.9, 26.5], item: "bar", price: 3.0 };
|
||||||
|
await table.add([data3]);
|
||||||
|
|
||||||
|
let res = await table.query().limit(10).toArray();
|
||||||
|
const resVector = res.map((r) => r.get("vector").toArray());
|
||||||
|
expect(resVector).toEqual([null, data2.vector, data3.vector]);
|
||||||
|
const resItem = res.map((r) => r.get("item").toArray());
|
||||||
|
expect(resItem).toEqual(["foo", null, "bar"]);
|
||||||
|
const resPrice = res.map((r) => r.get("price").toArray());
|
||||||
|
expect(resPrice).toEqual([10.0, 2.0, 3.0]);
|
||||||
|
|
||||||
|
const data4 = { item: "foo" };
|
||||||
|
// We can't omit a column if it's not nullable
|
||||||
|
await expect(table.add([data4])).rejects.toThrow("Invalid user input");
|
||||||
|
|
||||||
|
// But we can alter columns to make them nullable
|
||||||
|
await table.alterColumns([{ path: "price", nullable: true }]);
|
||||||
|
await table.add([data4]);
|
||||||
|
|
||||||
|
res = (await table.query().limit(10).toArray()).map((r) => r.toJSON());
|
||||||
|
expect(res).toEqual([data1, data2, data3, data4]);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("should be able to insert nullable data for non-nullable fields", async () => {
|
||||||
|
const db = await connect(tmpDir.name);
|
||||||
|
const schema = new arrow.Schema([
|
||||||
|
new arrow.Field("x", new arrow.Float64(), false),
|
||||||
|
new arrow.Field("id", new arrow.Utf8(), false),
|
||||||
|
]);
|
||||||
|
const table = await db.createEmptyTable("test", schema);
|
||||||
|
|
||||||
|
const data1 = { x: 4.1, id: "foo" };
|
||||||
|
await table.add([data1]);
|
||||||
|
const res = (await table.query().toArray())[0];
|
||||||
|
expect(res.x).toEqual(data1.x);
|
||||||
|
expect(res.id).toEqual(data1.id);
|
||||||
|
|
||||||
|
const data2 = { x: null, id: "bar" };
|
||||||
|
await expect(table.add([data2])).rejects.toThrow(
|
||||||
|
"declared as non-nullable but contains null values",
|
||||||
|
);
|
||||||
|
|
||||||
|
// But we can alter columns to make them nullable
|
||||||
|
await table.alterColumns([{ path: "x", nullable: true }]);
|
||||||
|
await table.add([data2]);
|
||||||
|
|
||||||
|
const res2 = await table.query().toArray();
|
||||||
|
expect(res2.length).toBe(2);
|
||||||
|
expect(res2[0].x).toEqual(data1.x);
|
||||||
|
expect(res2[0].id).toEqual(data1.id);
|
||||||
|
expect(res2[1].x).toBeNull();
|
||||||
|
expect(res2[1].id).toEqual(data2.id);
|
||||||
|
});
|
||||||
|
|
||||||
it("should return the table as an instance of an arrow table", async () => {
|
it("should return the table as an instance of an arrow table", async () => {
|
||||||
const arrowTbl = await table.toArrow();
|
const arrowTbl = await table.toArrow();
|
||||||
expect(arrowTbl).toBeInstanceOf(ArrowTable);
|
expect(arrowTbl).toBeInstanceOf(ArrowTable);
|
||||||
@@ -402,6 +477,54 @@ describe("When creating an index", () => {
|
|||||||
expect(rst.numRows).toBe(1);
|
expect(rst.numRows).toBe(1);
|
||||||
});
|
});
|
||||||
|
|
||||||
|
it("should create and search IVF_HNSW indices", async () => {
|
||||||
|
await tbl.createIndex("vec", {
|
||||||
|
config: Index.hnswSq(),
|
||||||
|
});
|
||||||
|
|
||||||
|
// check index directory
|
||||||
|
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||||
|
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||||
|
const indices = await tbl.listIndices();
|
||||||
|
expect(indices.length).toBe(1);
|
||||||
|
expect(indices[0]).toEqual({
|
||||||
|
name: "vec_idx",
|
||||||
|
indexType: "IvfHnswSq",
|
||||||
|
columns: ["vec"],
|
||||||
|
});
|
||||||
|
|
||||||
|
// Search without specifying the column
|
||||||
|
let rst = await tbl
|
||||||
|
.query()
|
||||||
|
.limit(2)
|
||||||
|
.nearestTo(queryVec)
|
||||||
|
.distanceType("dot")
|
||||||
|
.toArrow();
|
||||||
|
expect(rst.numRows).toBe(2);
|
||||||
|
|
||||||
|
// Search using `vectorSearch`
|
||||||
|
rst = await tbl.vectorSearch(queryVec).limit(2).toArrow();
|
||||||
|
expect(rst.numRows).toBe(2);
|
||||||
|
|
||||||
|
// Search with specifying the column
|
||||||
|
const rst2 = await tbl
|
||||||
|
.query()
|
||||||
|
.limit(2)
|
||||||
|
.nearestTo(queryVec)
|
||||||
|
.column("vec")
|
||||||
|
.toArrow();
|
||||||
|
expect(rst2.numRows).toBe(2);
|
||||||
|
expect(rst.toString()).toEqual(rst2.toString());
|
||||||
|
|
||||||
|
// test offset
|
||||||
|
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
|
||||||
|
expect(rst.numRows).toBe(1);
|
||||||
|
|
||||||
|
// test ef
|
||||||
|
rst = await tbl.query().limit(2).nearestTo(queryVec).ef(100).toArrow();
|
||||||
|
expect(rst.numRows).toBe(2);
|
||||||
|
});
|
||||||
|
|
||||||
it("should be able to query unindexed data", async () => {
|
it("should be able to query unindexed data", async () => {
|
||||||
await tbl.createIndex("vec");
|
await tbl.createIndex("vec");
|
||||||
await tbl.add([
|
await tbl.add([
|
||||||
|
|||||||
@@ -6,12 +6,16 @@ import { withTempDirectory } from "./util.ts";
|
|||||||
import * as lancedb from "@lancedb/lancedb";
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
import "@lancedb/lancedb/embedding/transformers";
|
import "@lancedb/lancedb/embedding/transformers";
|
||||||
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
|
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
|
||||||
|
import { EmbeddingFunction } from "@lancedb/lancedb/embedding";
|
||||||
import { Utf8 } from "apache-arrow";
|
import { Utf8 } from "apache-arrow";
|
||||||
|
|
||||||
test("full text search", async () => {
|
test("full text search", async () => {
|
||||||
await withTempDirectory(async (databaseDir) => {
|
await withTempDirectory(async (databaseDir) => {
|
||||||
const db = await lancedb.connect(databaseDir);
|
const db = await lancedb.connect(databaseDir);
|
||||||
const func = await getRegistry().get("huggingface").create();
|
console.log(getRegistry());
|
||||||
|
const func = (await getRegistry()
|
||||||
|
.get("huggingface")
|
||||||
|
?.create()) as EmbeddingFunction;
|
||||||
|
|
||||||
const facts = [
|
const facts = [
|
||||||
"Albert Einstein was a theoretical physicist.",
|
"Albert Einstein was a theoretical physicist.",
|
||||||
@@ -56,4 +60,4 @@ test("full text search", async () => {
|
|||||||
|
|
||||||
expect(actual[0]["text"]).toBe("The human body has 206 bones.");
|
expect(actual[0]["text"]).toBe("The human body has 206 bones.");
|
||||||
});
|
});
|
||||||
});
|
}, 100_000);
|
||||||
|
|||||||
@@ -19,9 +19,6 @@ import { EmbeddingFunctionConfig, getRegistry } from "./registry";
|
|||||||
|
|
||||||
export { EmbeddingFunction, TextEmbeddingFunction } from "./embedding_function";
|
export { EmbeddingFunction, TextEmbeddingFunction } from "./embedding_function";
|
||||||
|
|
||||||
// We need to explicitly export '*' so that the `register` decorator actually registers the class.
|
|
||||||
export * from "./openai";
|
|
||||||
export * from "./transformers";
|
|
||||||
export * from "./registry";
|
export * from "./registry";
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|||||||
@@ -17,8 +17,6 @@ import {
|
|||||||
type EmbeddingFunctionConstructor,
|
type EmbeddingFunctionConstructor,
|
||||||
} from "./embedding_function";
|
} from "./embedding_function";
|
||||||
import "reflect-metadata";
|
import "reflect-metadata";
|
||||||
import { OpenAIEmbeddingFunction } from "./openai";
|
|
||||||
import { TransformersEmbeddingFunction } from "./transformers";
|
|
||||||
|
|
||||||
type CreateReturnType<T> = T extends { init: () => Promise<void> }
|
type CreateReturnType<T> = T extends { init: () => Promise<void> }
|
||||||
? Promise<T>
|
? Promise<T>
|
||||||
@@ -73,10 +71,6 @@ export class EmbeddingFunctionRegistry {
|
|||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
get(name: "openai"): EmbeddingFunctionCreate<OpenAIEmbeddingFunction>;
|
|
||||||
get(
|
|
||||||
name: "huggingface",
|
|
||||||
): EmbeddingFunctionCreate<TransformersEmbeddingFunction>;
|
|
||||||
get<T extends EmbeddingFunction<unknown>>(
|
get<T extends EmbeddingFunction<unknown>>(
|
||||||
name: string,
|
name: string,
|
||||||
): EmbeddingFunctionCreate<T> | undefined;
|
): EmbeddingFunctionCreate<T> | undefined;
|
||||||
|
|||||||
@@ -385,6 +385,20 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
|
|||||||
return this;
|
return this;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Set the number of candidates to consider during the search
|
||||||
|
*
|
||||||
|
* This argument is only used when the vector column has an HNSW index.
|
||||||
|
* If there is no index then this value is ignored.
|
||||||
|
*
|
||||||
|
* Increasing this value will increase the recall of your query but will
|
||||||
|
* also increase the latency of your query. The default value is 1.5*limit.
|
||||||
|
*/
|
||||||
|
ef(ef: number): VectorQuery {
|
||||||
|
super.doCall((inner) => inner.ef(ef));
|
||||||
|
return this;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Set the vector column to query
|
* Set the vector column to query
|
||||||
*
|
*
|
||||||
|
|||||||
@@ -87,6 +87,12 @@ export interface OptimizeOptions {
|
|||||||
deleteUnverified: boolean;
|
deleteUnverified: boolean;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
export interface Version {
|
||||||
|
version: number;
|
||||||
|
timestamp: Date;
|
||||||
|
metadata: Record<string, string>;
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* A Table is a collection of Records in a LanceDB Database.
|
* A Table is a collection of Records in a LanceDB Database.
|
||||||
*
|
*
|
||||||
@@ -360,6 +366,11 @@ export abstract class Table {
|
|||||||
*/
|
*/
|
||||||
abstract checkoutLatest(): Promise<void>;
|
abstract checkoutLatest(): Promise<void>;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* List all the versions of the table
|
||||||
|
*/
|
||||||
|
abstract listVersions(): Promise<Version[]>;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Restore the table to the currently checked out version
|
* Restore the table to the currently checked out version
|
||||||
*
|
*
|
||||||
@@ -659,6 +670,14 @@ export class LocalTable extends Table {
|
|||||||
await this.inner.checkoutLatest();
|
await this.inner.checkoutLatest();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async listVersions(): Promise<Version[]> {
|
||||||
|
return (await this.inner.listVersions()).map((version) => ({
|
||||||
|
version: version.version,
|
||||||
|
timestamp: new Date(version.timestamp / 1000),
|
||||||
|
metadata: version.metadata,
|
||||||
|
}));
|
||||||
|
}
|
||||||
|
|
||||||
async restore(): Promise<void> {
|
async restore(): Promise<void> {
|
||||||
await this.inner.restore();
|
await this.inner.restore();
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-darwin-arm64",
|
"name": "@lancedb/lancedb-darwin-arm64",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"os": ["darwin"],
|
"os": ["darwin"],
|
||||||
"cpu": ["arm64"],
|
"cpu": ["arm64"],
|
||||||
"main": "lancedb.darwin-arm64.node",
|
"main": "lancedb.darwin-arm64.node",
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-darwin-x64",
|
"name": "@lancedb/lancedb-darwin-x64",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"os": ["darwin"],
|
"os": ["darwin"],
|
||||||
"cpu": ["x64"],
|
"cpu": ["x64"],
|
||||||
"main": "lancedb.darwin-x64.node",
|
"main": "lancedb.darwin-x64.node",
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"os": ["linux"],
|
"os": ["linux"],
|
||||||
"cpu": ["arm64"],
|
"cpu": ["arm64"],
|
||||||
"main": "lancedb.linux-arm64-gnu.node",
|
"main": "lancedb.linux-arm64-gnu.node",
|
||||||
|
|||||||
3
nodejs/npm/linux-arm64-musl/README.md
Normal file
3
nodejs/npm/linux-arm64-musl/README.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
# `@lancedb/lancedb-linux-arm64-musl`
|
||||||
|
|
||||||
|
This is the **aarch64-unknown-linux-musl** binary for `@lancedb/lancedb`
|
||||||
13
nodejs/npm/linux-arm64-musl/package.json
Normal file
13
nodejs/npm/linux-arm64-musl/package.json
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
{
|
||||||
|
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||||
|
"version": "0.13.1-beta.0",
|
||||||
|
"os": ["linux"],
|
||||||
|
"cpu": ["arm64"],
|
||||||
|
"main": "lancedb.linux-arm64-musl.node",
|
||||||
|
"files": ["lancedb.linux-arm64-musl.node"],
|
||||||
|
"license": "Apache 2.0",
|
||||||
|
"engines": {
|
||||||
|
"node": ">= 18"
|
||||||
|
},
|
||||||
|
"libc": ["musl"]
|
||||||
|
}
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"os": ["linux"],
|
"os": ["linux"],
|
||||||
"cpu": ["x64"],
|
"cpu": ["x64"],
|
||||||
"main": "lancedb.linux-x64-gnu.node",
|
"main": "lancedb.linux-x64-gnu.node",
|
||||||
|
|||||||
3
nodejs/npm/linux-x64-musl/README.md
Normal file
3
nodejs/npm/linux-x64-musl/README.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
# `@lancedb/lancedb-linux-x64-musl`
|
||||||
|
|
||||||
|
This is the **x86_64-unknown-linux-musl** binary for `@lancedb/lancedb`
|
||||||
13
nodejs/npm/linux-x64-musl/package.json
Normal file
13
nodejs/npm/linux-x64-musl/package.json
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
{
|
||||||
|
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||||
|
"version": "0.13.1-beta.0",
|
||||||
|
"os": ["linux"],
|
||||||
|
"cpu": ["x64"],
|
||||||
|
"main": "lancedb.linux-x64-musl.node",
|
||||||
|
"files": ["lancedb.linux-x64-musl.node"],
|
||||||
|
"license": "Apache 2.0",
|
||||||
|
"engines": {
|
||||||
|
"node": ">= 18"
|
||||||
|
},
|
||||||
|
"libc": ["musl"]
|
||||||
|
}
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"os": [
|
"os": [
|
||||||
"win32"
|
"win32"
|
||||||
],
|
],
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"os": ["win32"],
|
"os": ["win32"],
|
||||||
"cpu": ["x64"],
|
"cpu": ["x64"],
|
||||||
"main": "lancedb.win32-x64-msvc.node",
|
"main": "lancedb.win32-x64-msvc.node",
|
||||||
|
|||||||
10
nodejs/package-lock.json
generated
10
nodejs/package-lock.json
generated
@@ -1,12 +1,12 @@
|
|||||||
{
|
{
|
||||||
"name": "@lancedb/lancedb",
|
"name": "@lancedb/lancedb",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.0",
|
||||||
"lockfileVersion": 3,
|
"lockfileVersion": 3,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "@lancedb/lancedb",
|
"name": "@lancedb/lancedb",
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.0",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -6052,9 +6052,9 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/cross-spawn": {
|
"node_modules/cross-spawn": {
|
||||||
"version": "7.0.3",
|
"version": "7.0.6",
|
||||||
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz",
|
"resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.6.tgz",
|
||||||
"integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==",
|
"integrity": "sha512-uV2QOWP2nWzsy2aMp8aRibhi9dlzF5Hgh5SHaB9OiTGEyDTiJJyx0uy51QXdyWbtAHNua4XJzUKca3OzKUd3vA==",
|
||||||
"devOptional": true,
|
"devOptional": true,
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"path-key": "^3.1.0",
|
"path-key": "^3.1.0",
|
||||||
|
|||||||
@@ -10,11 +10,13 @@
|
|||||||
"vector database",
|
"vector database",
|
||||||
"ann"
|
"ann"
|
||||||
],
|
],
|
||||||
"version": "0.13.0-beta.1",
|
"version": "0.13.1-beta.0",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"exports": {
|
"exports": {
|
||||||
".": "./dist/index.js",
|
".": "./dist/index.js",
|
||||||
"./embedding": "./dist/embedding/index.js"
|
"./embedding": "./dist/embedding/index.js",
|
||||||
|
"./embedding/openai": "./dist/embedding/openai.js",
|
||||||
|
"./embedding/transformers": "./dist/embedding/transformers.js"
|
||||||
},
|
},
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
"napi": {
|
"napi": {
|
||||||
@@ -22,10 +24,12 @@
|
|||||||
"triples": {
|
"triples": {
|
||||||
"defaults": false,
|
"defaults": false,
|
||||||
"additional": [
|
"additional": [
|
||||||
"aarch64-apple-darwin",
|
|
||||||
"aarch64-unknown-linux-gnu",
|
|
||||||
"x86_64-apple-darwin",
|
"x86_64-apple-darwin",
|
||||||
|
"aarch64-apple-darwin",
|
||||||
"x86_64-unknown-linux-gnu",
|
"x86_64-unknown-linux-gnu",
|
||||||
|
"aarch64-unknown-linux-gnu",
|
||||||
|
"x86_64-unknown-linux-musl",
|
||||||
|
"aarch64-unknown-linux-musl",
|
||||||
"x86_64-pc-windows-msvc"
|
"x86_64-pc-windows-msvc"
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -167,6 +167,11 @@ impl VectorQuery {
|
|||||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[napi]
|
||||||
|
pub fn ef(&mut self, ef: u32) {
|
||||||
|
self.inner = self.inner.clone().ef(ef as usize);
|
||||||
|
}
|
||||||
|
|
||||||
#[napi]
|
#[napi]
|
||||||
pub fn bypass_vector_index(&mut self) {
|
pub fn bypass_vector_index(&mut self) {
|
||||||
self.inner = self.inner.clone().bypass_vector_index()
|
self.inner = self.inner.clone().bypass_vector_index()
|
||||||
|
|||||||
@@ -12,6 +12,8 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
|
use std::collections::HashMap;
|
||||||
|
|
||||||
use arrow_ipc::writer::FileWriter;
|
use arrow_ipc::writer::FileWriter;
|
||||||
use lancedb::ipc::ipc_file_to_batches;
|
use lancedb::ipc::ipc_file_to_batches;
|
||||||
use lancedb::table::{
|
use lancedb::table::{
|
||||||
@@ -226,6 +228,28 @@ impl Table {
|
|||||||
self.inner_ref()?.checkout_latest().await.default_error()
|
self.inner_ref()?.checkout_latest().await.default_error()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[napi(catch_unwind)]
|
||||||
|
pub async fn list_versions(&self) -> napi::Result<Vec<Version>> {
|
||||||
|
self.inner_ref()?
|
||||||
|
.list_versions()
|
||||||
|
.await
|
||||||
|
.map(|versions| {
|
||||||
|
versions
|
||||||
|
.iter()
|
||||||
|
.map(|version| Version {
|
||||||
|
version: version.version as i64,
|
||||||
|
timestamp: version.timestamp.timestamp_micros(),
|
||||||
|
metadata: version
|
||||||
|
.metadata
|
||||||
|
.iter()
|
||||||
|
.map(|(k, v)| (k.clone(), v.clone()))
|
||||||
|
.collect(),
|
||||||
|
})
|
||||||
|
.collect()
|
||||||
|
})
|
||||||
|
.default_error()
|
||||||
|
}
|
||||||
|
|
||||||
#[napi(catch_unwind)]
|
#[napi(catch_unwind)]
|
||||||
pub async fn restore(&self) -> napi::Result<()> {
|
pub async fn restore(&self) -> napi::Result<()> {
|
||||||
self.inner_ref()?.restore().await.default_error()
|
self.inner_ref()?.restore().await.default_error()
|
||||||
@@ -466,3 +490,10 @@ impl From<lancedb::index::IndexStatistics> for IndexStatistics {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[napi(object)]
|
||||||
|
pub struct Version {
|
||||||
|
pub version: i64,
|
||||||
|
pub timestamp: i64,
|
||||||
|
pub metadata: HashMap<String, String>,
|
||||||
|
}
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
[tool.bumpversion]
|
[tool.bumpversion]
|
||||||
current_version = "0.16.0-beta.1"
|
current_version = "0.17.0-beta.0"
|
||||||
parse = """(?x)
|
parse = """(?x)
|
||||||
(?P<major>0|[1-9]\\d*)\\.
|
(?P<major>0|[1-9]\\d*)\\.
|
||||||
(?P<minor>0|[1-9]\\d*)\\.
|
(?P<minor>0|[1-9]\\d*)\\.
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "lancedb-python"
|
name = "lancedb-python"
|
||||||
version = "0.16.0-beta.1"
|
version = "0.17.0-beta.0"
|
||||||
edition.workspace = true
|
edition.workspace = true
|
||||||
description = "Python bindings for LanceDB"
|
description = "Python bindings for LanceDB"
|
||||||
license.workspace = true
|
license.workspace = true
|
||||||
@@ -15,13 +15,19 @@ crate-type = ["cdylib"]
|
|||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
arrow = { version = "52.1", features = ["pyarrow"] }
|
arrow = { version = "52.1", features = ["pyarrow"] }
|
||||||
lancedb = { path = "../rust/lancedb" }
|
lancedb = { path = "../rust/lancedb", default-features = false }
|
||||||
env_logger.workspace = true
|
env_logger.workspace = true
|
||||||
pyo3 = { version = "0.21", features = ["extension-module", "abi3-py38", "gil-refs"] }
|
pyo3 = { version = "0.21", features = [
|
||||||
|
"extension-module",
|
||||||
|
"abi3-py39",
|
||||||
|
"gil-refs"
|
||||||
|
] }
|
||||||
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
|
# Using this fork for now: https://github.com/awestlake87/pyo3-asyncio/issues/119
|
||||||
# pyo3-asyncio = { version = "0.20", features = ["attributes", "tokio-runtime"] }
|
# pyo3-asyncio = { version = "0.20", features = ["attributes", "tokio-runtime"] }
|
||||||
pyo3-asyncio-0-21 = { version = "0.21.0", features = ["attributes", "tokio-runtime"] }
|
pyo3-asyncio-0-21 = { version = "0.21.0", features = [
|
||||||
|
"attributes",
|
||||||
|
"tokio-runtime"
|
||||||
|
] }
|
||||||
pin-project = "1.1.5"
|
pin-project = "1.1.5"
|
||||||
futures.workspace = true
|
futures.workspace = true
|
||||||
tokio = { version = "1.36.0", features = ["sync"] }
|
tokio = { version = "1.36.0", features = ["sync"] }
|
||||||
@@ -29,10 +35,14 @@ tokio = { version = "1.36.0", features = ["sync"] }
|
|||||||
[build-dependencies]
|
[build-dependencies]
|
||||||
pyo3-build-config = { version = "0.20.3", features = [
|
pyo3-build-config = { version = "0.20.3", features = [
|
||||||
"extension-module",
|
"extension-module",
|
||||||
"abi3-py38",
|
"abi3-py39",
|
||||||
] }
|
] }
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
default = ["remote"]
|
default = ["default-tls", "remote"]
|
||||||
fp16kernels = ["lancedb/fp16kernels"]
|
fp16kernels = ["lancedb/fp16kernels"]
|
||||||
remote = ["lancedb/remote"]
|
remote = ["lancedb/remote"]
|
||||||
|
# TLS
|
||||||
|
default-tls = ["lancedb/default-tls"]
|
||||||
|
native-tls = ["lancedb/native-tls"]
|
||||||
|
rustls-tls = ["lancedb/rustls-tls"]
|
||||||
|
|||||||
@@ -3,8 +3,7 @@ name = "lancedb"
|
|||||||
# version in Cargo.toml
|
# version in Cargo.toml
|
||||||
dependencies = [
|
dependencies = [
|
||||||
"deprecation",
|
"deprecation",
|
||||||
"nest-asyncio~=1.0",
|
"pylance==0.20.0b2",
|
||||||
"pylance==0.19.2",
|
|
||||||
"tqdm>=4.27.0",
|
"tqdm>=4.27.0",
|
||||||
"pydantic>=1.10",
|
"pydantic>=1.10",
|
||||||
"packaging",
|
"packaging",
|
||||||
@@ -31,7 +30,6 @@ classifiers = [
|
|||||||
"Programming Language :: Python",
|
"Programming Language :: Python",
|
||||||
"Programming Language :: Python :: 3",
|
"Programming Language :: Python :: 3",
|
||||||
"Programming Language :: Python :: 3 :: Only",
|
"Programming Language :: Python :: 3 :: Only",
|
||||||
"Programming Language :: Python :: 3.8",
|
|
||||||
"Programming Language :: Python :: 3.9",
|
"Programming Language :: Python :: 3.9",
|
||||||
"Programming Language :: Python :: 3.10",
|
"Programming Language :: Python :: 3.10",
|
||||||
"Programming Language :: Python :: 3.11",
|
"Programming Language :: Python :: 3.11",
|
||||||
|
|||||||
@@ -83,25 +83,33 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
|||||||
"""
|
"""
|
||||||
openai = attempt_import_or_raise("openai")
|
openai = attempt_import_or_raise("openai")
|
||||||
|
|
||||||
|
valid_texts = []
|
||||||
|
valid_indices = []
|
||||||
|
for idx, text in enumerate(texts):
|
||||||
|
if text:
|
||||||
|
valid_texts.append(text)
|
||||||
|
valid_indices.append(idx)
|
||||||
|
|
||||||
# TODO retry, rate limit, token limit
|
# TODO retry, rate limit, token limit
|
||||||
try:
|
try:
|
||||||
if self.name == "text-embedding-ada-002":
|
|
||||||
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
|
|
||||||
else:
|
|
||||||
kwargs = {
|
kwargs = {
|
||||||
"input": texts,
|
"input": valid_texts,
|
||||||
"model": self.name,
|
"model": self.name,
|
||||||
}
|
}
|
||||||
if self.dim:
|
if self.name != "text-embedding-ada-002":
|
||||||
kwargs["dimensions"] = self.dim
|
kwargs["dimensions"] = self.dim
|
||||||
|
|
||||||
rs = self._openai_client.embeddings.create(**kwargs)
|
rs = self._openai_client.embeddings.create(**kwargs)
|
||||||
|
valid_embeddings = {
|
||||||
|
idx: v.embedding for v, idx in zip(rs.data, valid_indices)
|
||||||
|
}
|
||||||
except openai.BadRequestError:
|
except openai.BadRequestError:
|
||||||
logging.exception("Bad request: %s", texts)
|
logging.exception("Bad request: %s", texts)
|
||||||
return [None] * len(texts)
|
return [None] * len(texts)
|
||||||
except Exception:
|
except Exception:
|
||||||
logging.exception("OpenAI embeddings error")
|
logging.exception("OpenAI embeddings error")
|
||||||
raise
|
raise
|
||||||
return [v.embedding for v in rs.data]
|
return [valid_embeddings.get(idx, None) for idx in range(len(texts))]
|
||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def _openai_client(self):
|
def _openai_client(self):
|
||||||
|
|||||||
@@ -1,15 +1,5 @@
|
|||||||
# Copyright 2023 LanceDB Developers
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
#
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
"""Pydantic (v1 / v2) adapter for LanceDB"""
|
"""Pydantic (v1 / v2) adapter for LanceDB"""
|
||||||
|
|
||||||
@@ -30,6 +20,7 @@ from typing import (
|
|||||||
Type,
|
Type,
|
||||||
Union,
|
Union,
|
||||||
_GenericAlias,
|
_GenericAlias,
|
||||||
|
GenericAlias,
|
||||||
)
|
)
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -75,7 +66,7 @@ def vector(dim: int, value_type: pa.DataType = pa.float32()):
|
|||||||
|
|
||||||
|
|
||||||
def Vector(
|
def Vector(
|
||||||
dim: int, value_type: pa.DataType = pa.float32()
|
dim: int, value_type: pa.DataType = pa.float32(), nullable: bool = True
|
||||||
) -> Type[FixedSizeListMixin]:
|
) -> Type[FixedSizeListMixin]:
|
||||||
"""Pydantic Vector Type.
|
"""Pydantic Vector Type.
|
||||||
|
|
||||||
@@ -88,6 +79,8 @@ def Vector(
|
|||||||
The dimension of the vector.
|
The dimension of the vector.
|
||||||
value_type : pyarrow.DataType, optional
|
value_type : pyarrow.DataType, optional
|
||||||
The value type of the vector, by default pa.float32()
|
The value type of the vector, by default pa.float32()
|
||||||
|
nullable : bool, optional
|
||||||
|
Whether the vector is nullable, by default it is True.
|
||||||
|
|
||||||
Examples
|
Examples
|
||||||
--------
|
--------
|
||||||
@@ -103,7 +96,7 @@ def Vector(
|
|||||||
>>> assert schema == pa.schema([
|
>>> assert schema == pa.schema([
|
||||||
... pa.field("id", pa.int64(), False),
|
... pa.field("id", pa.int64(), False),
|
||||||
... pa.field("url", pa.utf8(), False),
|
... pa.field("url", pa.utf8(), False),
|
||||||
... pa.field("embeddings", pa.list_(pa.float32(), 768), False)
|
... pa.field("embeddings", pa.list_(pa.float32(), 768))
|
||||||
... ])
|
... ])
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@@ -112,6 +105,10 @@ def Vector(
|
|||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return f"FixedSizeList(dim={dim})"
|
return f"FixedSizeList(dim={dim})"
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def nullable() -> bool:
|
||||||
|
return nullable
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def dim() -> int:
|
def dim() -> int:
|
||||||
return dim
|
return dim
|
||||||
@@ -205,9 +202,7 @@ else:
|
|||||||
def _pydantic_to_arrow_type(field: FieldInfo) -> pa.DataType:
|
def _pydantic_to_arrow_type(field: FieldInfo) -> pa.DataType:
|
||||||
"""Convert a Pydantic FieldInfo to Arrow DataType"""
|
"""Convert a Pydantic FieldInfo to Arrow DataType"""
|
||||||
|
|
||||||
if isinstance(field.annotation, _GenericAlias) or (
|
if isinstance(field.annotation, (_GenericAlias, GenericAlias)):
|
||||||
sys.version_info > (3, 9) and isinstance(field.annotation, types.GenericAlias)
|
|
||||||
):
|
|
||||||
origin = field.annotation.__origin__
|
origin = field.annotation.__origin__
|
||||||
args = field.annotation.__args__
|
args = field.annotation.__args__
|
||||||
if origin is list:
|
if origin is list:
|
||||||
@@ -235,7 +230,7 @@ def _pydantic_to_arrow_type(field: FieldInfo) -> pa.DataType:
|
|||||||
|
|
||||||
def is_nullable(field: FieldInfo) -> bool:
|
def is_nullable(field: FieldInfo) -> bool:
|
||||||
"""Check if a Pydantic FieldInfo is nullable."""
|
"""Check if a Pydantic FieldInfo is nullable."""
|
||||||
if isinstance(field.annotation, _GenericAlias):
|
if isinstance(field.annotation, (_GenericAlias, GenericAlias)):
|
||||||
origin = field.annotation.__origin__
|
origin = field.annotation.__origin__
|
||||||
args = field.annotation.__args__
|
args = field.annotation.__args__
|
||||||
if origin == Union:
|
if origin == Union:
|
||||||
@@ -246,6 +241,10 @@ def is_nullable(field: FieldInfo) -> bool:
|
|||||||
for typ in args:
|
for typ in args:
|
||||||
if typ is type(None):
|
if typ is type(None):
|
||||||
return True
|
return True
|
||||||
|
elif inspect.isclass(field.annotation) and issubclass(
|
||||||
|
field.annotation, FixedSizeListMixin
|
||||||
|
):
|
||||||
|
return field.annotation.nullable()
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -131,6 +131,8 @@ class Query(pydantic.BaseModel):
|
|||||||
|
|
||||||
fast_search: bool = False
|
fast_search: bool = False
|
||||||
|
|
||||||
|
ef: Optional[int] = None
|
||||||
|
|
||||||
|
|
||||||
class LanceQueryBuilder(ABC):
|
class LanceQueryBuilder(ABC):
|
||||||
"""An abstract query builder. Subclasses are defined for vector search,
|
"""An abstract query builder. Subclasses are defined for vector search,
|
||||||
@@ -257,6 +259,7 @@ class LanceQueryBuilder(ABC):
|
|||||||
self._with_row_id = False
|
self._with_row_id = False
|
||||||
self._vector = None
|
self._vector = None
|
||||||
self._text = None
|
self._text = None
|
||||||
|
self._ef = None
|
||||||
|
|
||||||
@deprecation.deprecated(
|
@deprecation.deprecated(
|
||||||
deprecated_in="0.3.1",
|
deprecated_in="0.3.1",
|
||||||
@@ -367,11 +370,13 @@ class LanceQueryBuilder(ABC):
|
|||||||
----------
|
----------
|
||||||
limit: int
|
limit: int
|
||||||
The maximum number of results to return.
|
The maximum number of results to return.
|
||||||
By default the query is limited to the first 10.
|
The default query limit is 10 results.
|
||||||
Call this method and pass 0, a negative value,
|
For ANN/KNN queries, you must specify a limit.
|
||||||
or None to remove the limit.
|
Entering 0, a negative number, or None will reset
|
||||||
*WARNING* if you have a large dataset, removing
|
the limit to the default value of 10.
|
||||||
the limit can potentially result in reading a
|
*WARNING* if you have a large dataset, setting
|
||||||
|
the limit to a large number, e.g. the table size,
|
||||||
|
can potentially result in reading a
|
||||||
large amount of data into memory and cause
|
large amount of data into memory and cause
|
||||||
out of memory issues.
|
out of memory issues.
|
||||||
|
|
||||||
@@ -638,6 +643,28 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
self._nprobes = nprobes
|
self._nprobes = nprobes
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def ef(self, ef: int) -> LanceVectorQueryBuilder:
|
||||||
|
"""Set the number of candidates to consider during search.
|
||||||
|
|
||||||
|
Higher values will yield better recall (more likely to find vectors if
|
||||||
|
they exist) at the expense of latency.
|
||||||
|
|
||||||
|
This only applies to the HNSW-related index.
|
||||||
|
The default value is 1.5 * limit.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
ef: int
|
||||||
|
The number of candidates to consider during search.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceVectorQueryBuilder
|
||||||
|
The LanceQueryBuilder object.
|
||||||
|
"""
|
||||||
|
self._ef = ef
|
||||||
|
return self
|
||||||
|
|
||||||
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
|
def refine_factor(self, refine_factor: int) -> LanceVectorQueryBuilder:
|
||||||
"""Set the refine factor to use, increasing the number of vectors sampled.
|
"""Set the refine factor to use, increasing the number of vectors sampled.
|
||||||
|
|
||||||
@@ -700,6 +727,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
|||||||
with_row_id=self._with_row_id,
|
with_row_id=self._with_row_id,
|
||||||
offset=self._offset,
|
offset=self._offset,
|
||||||
fast_search=self._fast_search,
|
fast_search=self._fast_search,
|
||||||
|
ef=self._ef,
|
||||||
)
|
)
|
||||||
result_set = self._table._execute_query(query, batch_size)
|
result_set = self._table._execute_query(query, batch_size)
|
||||||
if self._reranker is not None:
|
if self._reranker is not None:
|
||||||
@@ -1071,6 +1099,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
|||||||
self._vector_query.nprobes(self._nprobes)
|
self._vector_query.nprobes(self._nprobes)
|
||||||
if self._refine_factor:
|
if self._refine_factor:
|
||||||
self._vector_query.refine_factor(self._refine_factor)
|
self._vector_query.refine_factor(self._refine_factor)
|
||||||
|
if self._ef:
|
||||||
|
self._vector_query.ef(self._ef)
|
||||||
|
|
||||||
with ThreadPoolExecutor() as executor:
|
with ThreadPoolExecutor() as executor:
|
||||||
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
|
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
|
||||||
@@ -1197,6 +1227,29 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
|
|||||||
self._nprobes = nprobes
|
self._nprobes = nprobes
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def ef(self, ef: int) -> LanceHybridQueryBuilder:
|
||||||
|
"""
|
||||||
|
Set the number of candidates to consider during search.
|
||||||
|
|
||||||
|
Higher values will yield better recall (more likely to find vectors if
|
||||||
|
they exist) at the expense of latency.
|
||||||
|
|
||||||
|
This only applies to the HNSW-related index.
|
||||||
|
The default value is 1.5 * limit.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
ef: int
|
||||||
|
The number of candidates to consider during search.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
LanceHybridQueryBuilder
|
||||||
|
The LanceHybridQueryBuilder object.
|
||||||
|
"""
|
||||||
|
self._ef = ef
|
||||||
|
return self
|
||||||
|
|
||||||
def metric(self, metric: Literal["L2", "cosine", "dot"]) -> LanceHybridQueryBuilder:
|
def metric(self, metric: Literal["L2", "cosine", "dot"]) -> LanceHybridQueryBuilder:
|
||||||
"""Set the distance metric to use.
|
"""Set the distance metric to use.
|
||||||
|
|
||||||
@@ -1495,7 +1548,8 @@ class AsyncQuery(AsyncQueryBase):
|
|||||||
return pa.array(vec)
|
return pa.array(vec)
|
||||||
|
|
||||||
def nearest_to(
|
def nearest_to(
|
||||||
self, query_vector: Optional[Union[VEC, Tuple, List[VEC]]] = None
|
self,
|
||||||
|
query_vector: Union[VEC, Tuple, List[VEC]],
|
||||||
) -> AsyncVectorQuery:
|
) -> AsyncVectorQuery:
|
||||||
"""
|
"""
|
||||||
Find the nearest vectors to the given query vector.
|
Find the nearest vectors to the given query vector.
|
||||||
@@ -1542,6 +1596,9 @@ class AsyncQuery(AsyncQueryBase):
|
|||||||
will be added to the results. This column will contain the index of the
|
will be added to the results. This column will contain the index of the
|
||||||
query vector that the result is nearest to.
|
query vector that the result is nearest to.
|
||||||
"""
|
"""
|
||||||
|
if query_vector is None:
|
||||||
|
raise ValueError("query_vector can not be None")
|
||||||
|
|
||||||
if (
|
if (
|
||||||
isinstance(query_vector, list)
|
isinstance(query_vector, list)
|
||||||
and len(query_vector) > 0
|
and len(query_vector) > 0
|
||||||
@@ -1618,7 +1675,7 @@ class AsyncVectorQuery(AsyncQueryBase):
|
|||||||
"""
|
"""
|
||||||
Set the number of partitions to search (probe)
|
Set the number of partitions to search (probe)
|
||||||
|
|
||||||
This argument is only used when the vector column has an IVF PQ index.
|
This argument is only used when the vector column has an IVF-based index.
|
||||||
If there is no index then this value is ignored.
|
If there is no index then this value is ignored.
|
||||||
|
|
||||||
The IVF stage of IVF PQ divides the input into partitions (clusters) of
|
The IVF stage of IVF PQ divides the input into partitions (clusters) of
|
||||||
@@ -1640,6 +1697,21 @@ class AsyncVectorQuery(AsyncQueryBase):
|
|||||||
self._inner.nprobes(nprobes)
|
self._inner.nprobes(nprobes)
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
def ef(self, ef: int) -> AsyncVectorQuery:
|
||||||
|
"""
|
||||||
|
Set the number of candidates to consider during search
|
||||||
|
|
||||||
|
This argument is only used when the vector column has an HNSW index.
|
||||||
|
If there is no index then this value is ignored.
|
||||||
|
|
||||||
|
Increasing this value will increase the recall of your query but will also
|
||||||
|
increase the latency of your query. The default value is 1.5 * limit. This
|
||||||
|
default is good for many cases but the best value to use will depend on your
|
||||||
|
data and the recall that you need to achieve.
|
||||||
|
"""
|
||||||
|
self._inner.ef(ef)
|
||||||
|
return self
|
||||||
|
|
||||||
def refine_factor(self, refine_factor: int) -> AsyncVectorQuery:
|
def refine_factor(self, refine_factor: int) -> AsyncVectorQuery:
|
||||||
"""
|
"""
|
||||||
A multiplier to control how many additional rows are taken during the refine
|
A multiplier to control how many additional rows are taken during the refine
|
||||||
|
|||||||
25
python/python/lancedb/remote/background_loop.py
Normal file
25
python/python/lancedb/remote/background_loop.py
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import threading
|
||||||
|
|
||||||
|
|
||||||
|
class BackgroundEventLoop:
|
||||||
|
"""
|
||||||
|
A background event loop that can run futures.
|
||||||
|
|
||||||
|
Used to bridge sync and async code, without messing with users event loops.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.loop = asyncio.new_event_loop()
|
||||||
|
self.thread = threading.Thread(
|
||||||
|
target=self.loop.run_forever,
|
||||||
|
name="LanceDBBackgroundEventLoop",
|
||||||
|
daemon=True,
|
||||||
|
)
|
||||||
|
self.thread.start()
|
||||||
|
|
||||||
|
def run(self, future):
|
||||||
|
return asyncio.run_coroutine_threadsafe(future, self.loop).result()
|
||||||
@@ -11,7 +11,6 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
import asyncio
|
|
||||||
from datetime import timedelta
|
from datetime import timedelta
|
||||||
import logging
|
import logging
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
@@ -21,6 +20,7 @@ import warnings
|
|||||||
|
|
||||||
from lancedb import connect_async
|
from lancedb import connect_async
|
||||||
from lancedb.remote import ClientConfig
|
from lancedb.remote import ClientConfig
|
||||||
|
from lancedb.remote.background_loop import BackgroundEventLoop
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from overrides import override
|
from overrides import override
|
||||||
|
|
||||||
@@ -31,6 +31,8 @@ from ..pydantic import LanceModel
|
|||||||
from ..table import Table
|
from ..table import Table
|
||||||
from ..util import validate_table_name
|
from ..util import validate_table_name
|
||||||
|
|
||||||
|
LOOP = BackgroundEventLoop()
|
||||||
|
|
||||||
|
|
||||||
class RemoteDBConnection(DBConnection):
|
class RemoteDBConnection(DBConnection):
|
||||||
"""A connection to a remote LanceDB database."""
|
"""A connection to a remote LanceDB database."""
|
||||||
@@ -86,18 +88,9 @@ class RemoteDBConnection(DBConnection):
|
|||||||
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
|
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
|
||||||
self.db_name = parsed.netloc
|
self.db_name = parsed.netloc
|
||||||
|
|
||||||
import nest_asyncio
|
|
||||||
|
|
||||||
nest_asyncio.apply()
|
|
||||||
try:
|
|
||||||
self._loop = asyncio.get_running_loop()
|
|
||||||
except RuntimeError:
|
|
||||||
self._loop = asyncio.new_event_loop()
|
|
||||||
asyncio.set_event_loop(self._loop)
|
|
||||||
|
|
||||||
self.client_config = client_config
|
self.client_config = client_config
|
||||||
|
|
||||||
self._conn = self._loop.run_until_complete(
|
self._conn = LOOP.run(
|
||||||
connect_async(
|
connect_async(
|
||||||
db_url,
|
db_url,
|
||||||
api_key=api_key,
|
api_key=api_key,
|
||||||
@@ -127,9 +120,7 @@ class RemoteDBConnection(DBConnection):
|
|||||||
-------
|
-------
|
||||||
An iterator of table names.
|
An iterator of table names.
|
||||||
"""
|
"""
|
||||||
return self._loop.run_until_complete(
|
return LOOP.run(self._conn.table_names(start_after=page_token, limit=limit))
|
||||||
self._conn.table_names(start_after=page_token, limit=limit)
|
|
||||||
)
|
|
||||||
|
|
||||||
@override
|
@override
|
||||||
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
|
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
|
||||||
@@ -152,8 +143,8 @@ class RemoteDBConnection(DBConnection):
|
|||||||
" (there is no local cache to configure)"
|
" (there is no local cache to configure)"
|
||||||
)
|
)
|
||||||
|
|
||||||
table = self._loop.run_until_complete(self._conn.open_table(name))
|
table = LOOP.run(self._conn.open_table(name))
|
||||||
return RemoteTable(table, self.db_name, self._loop)
|
return RemoteTable(table, self.db_name)
|
||||||
|
|
||||||
@override
|
@override
|
||||||
def create_table(
|
def create_table(
|
||||||
@@ -268,7 +259,7 @@ class RemoteDBConnection(DBConnection):
|
|||||||
|
|
||||||
from .table import RemoteTable
|
from .table import RemoteTable
|
||||||
|
|
||||||
table = self._loop.run_until_complete(
|
table = LOOP.run(
|
||||||
self._conn.create_table(
|
self._conn.create_table(
|
||||||
name,
|
name,
|
||||||
data,
|
data,
|
||||||
@@ -278,7 +269,7 @@ class RemoteDBConnection(DBConnection):
|
|||||||
fill_value=fill_value,
|
fill_value=fill_value,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
return RemoteTable(table, self.db_name, self._loop)
|
return RemoteTable(table, self.db_name)
|
||||||
|
|
||||||
@override
|
@override
|
||||||
def drop_table(self, name: str):
|
def drop_table(self, name: str):
|
||||||
@@ -289,7 +280,7 @@ class RemoteDBConnection(DBConnection):
|
|||||||
name: str
|
name: str
|
||||||
The name of the table.
|
The name of the table.
|
||||||
"""
|
"""
|
||||||
self._loop.run_until_complete(self._conn.drop_table(name))
|
LOOP.run(self._conn.drop_table(name))
|
||||||
|
|
||||||
@override
|
@override
|
||||||
def rename_table(self, cur_name: str, new_name: str):
|
def rename_table(self, cur_name: str, new_name: str):
|
||||||
@@ -302,7 +293,7 @@ class RemoteDBConnection(DBConnection):
|
|||||||
new_name: str
|
new_name: str
|
||||||
The new name of the table.
|
The new name of the table.
|
||||||
"""
|
"""
|
||||||
self._loop.run_until_complete(self._conn.rename_table(cur_name, new_name))
|
LOOP.run(self._conn.rename_table(cur_name, new_name))
|
||||||
|
|
||||||
async def close(self):
|
async def close(self):
|
||||||
"""Close the connection to the database."""
|
"""Close the connection to the database."""
|
||||||
|
|||||||
@@ -12,12 +12,12 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from datetime import timedelta
|
from datetime import timedelta
|
||||||
import asyncio
|
|
||||||
import logging
|
import logging
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import Dict, Iterable, List, Optional, Union, Literal
|
from typing import Dict, Iterable, List, Optional, Union, Literal
|
||||||
|
|
||||||
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfPq, LabelList
|
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfPq, LabelList
|
||||||
|
from lancedb.remote.db import LOOP
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
|
||||||
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||||
@@ -33,9 +33,7 @@ class RemoteTable(Table):
|
|||||||
self,
|
self,
|
||||||
table: AsyncTable,
|
table: AsyncTable,
|
||||||
db_name: str,
|
db_name: str,
|
||||||
loop: Optional[asyncio.AbstractEventLoop] = None,
|
|
||||||
):
|
):
|
||||||
self._loop = loop
|
|
||||||
self._table = table
|
self._table = table
|
||||||
self.db_name = db_name
|
self.db_name = db_name
|
||||||
|
|
||||||
@@ -56,12 +54,12 @@ class RemoteTable(Table):
|
|||||||
of this Table
|
of this Table
|
||||||
|
|
||||||
"""
|
"""
|
||||||
return self._loop.run_until_complete(self._table.schema())
|
return LOOP.run(self._table.schema())
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def version(self) -> int:
|
def version(self) -> int:
|
||||||
"""Get the current version of the table"""
|
"""Get the current version of the table"""
|
||||||
return self._loop.run_until_complete(self._table.version())
|
return LOOP.run(self._table.version())
|
||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def embedding_functions(self) -> dict:
|
def embedding_functions(self) -> dict:
|
||||||
@@ -78,6 +76,10 @@ class RemoteTable(Table):
|
|||||||
self.schema.metadata
|
self.schema.metadata
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def list_versions(self):
|
||||||
|
"""List all versions of the table"""
|
||||||
|
return self._loop.run_until_complete(self._table.list_versions())
|
||||||
|
|
||||||
def to_arrow(self) -> pa.Table:
|
def to_arrow(self) -> pa.Table:
|
||||||
"""to_arrow() is not yet supported on LanceDB cloud."""
|
"""to_arrow() is not yet supported on LanceDB cloud."""
|
||||||
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
|
raise NotImplementedError("to_arrow() is not yet supported on LanceDB cloud.")
|
||||||
@@ -86,13 +88,19 @@ class RemoteTable(Table):
|
|||||||
"""to_pandas() is not yet supported on LanceDB cloud."""
|
"""to_pandas() is not yet supported on LanceDB cloud."""
|
||||||
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
|
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
|
||||||
|
|
||||||
|
def checkout(self, version):
|
||||||
|
return self._loop.run_until_complete(self._table.checkout(version))
|
||||||
|
|
||||||
|
def checkout_latest(self):
|
||||||
|
return self._loop.run_until_complete(self._table.checkout_latest())
|
||||||
|
|
||||||
def list_indices(self):
|
def list_indices(self):
|
||||||
"""List all the indices on the table"""
|
"""List all the indices on the table"""
|
||||||
return self._loop.run_until_complete(self._table.list_indices())
|
return LOOP.run(self._table.list_indices())
|
||||||
|
|
||||||
def index_stats(self, index_uuid: str):
|
def index_stats(self, index_uuid: str):
|
||||||
"""List all the stats of a specified index"""
|
"""List all the stats of a specified index"""
|
||||||
return self._loop.run_until_complete(self._table.index_stats(index_uuid))
|
return LOOP.run(self._table.index_stats(index_uuid))
|
||||||
|
|
||||||
def create_scalar_index(
|
def create_scalar_index(
|
||||||
self,
|
self,
|
||||||
@@ -122,9 +130,7 @@ class RemoteTable(Table):
|
|||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown index type: {index_type}")
|
raise ValueError(f"Unknown index type: {index_type}")
|
||||||
|
|
||||||
self._loop.run_until_complete(
|
LOOP.run(self._table.create_index(column, config=config, replace=replace))
|
||||||
self._table.create_index(column, config=config, replace=replace)
|
|
||||||
)
|
|
||||||
|
|
||||||
def create_fts_index(
|
def create_fts_index(
|
||||||
self,
|
self,
|
||||||
@@ -134,9 +140,7 @@ class RemoteTable(Table):
|
|||||||
with_position: bool = True,
|
with_position: bool = True,
|
||||||
):
|
):
|
||||||
config = FTS(with_position=with_position)
|
config = FTS(with_position=with_position)
|
||||||
self._loop.run_until_complete(
|
LOOP.run(self._table.create_index(column, config=config, replace=replace))
|
||||||
self._table.create_index(column, config=config, replace=replace)
|
|
||||||
)
|
|
||||||
|
|
||||||
def create_index(
|
def create_index(
|
||||||
self,
|
self,
|
||||||
@@ -217,9 +221,7 @@ class RemoteTable(Table):
|
|||||||
" 'IVF_PQ', 'IVF_HNSW_PQ', 'IVF_HNSW_SQ'"
|
" 'IVF_PQ', 'IVF_HNSW_PQ', 'IVF_HNSW_SQ'"
|
||||||
)
|
)
|
||||||
|
|
||||||
self._loop.run_until_complete(
|
LOOP.run(self._table.create_index(vector_column_name, config=config))
|
||||||
self._table.create_index(vector_column_name, config=config)
|
|
||||||
)
|
|
||||||
|
|
||||||
def add(
|
def add(
|
||||||
self,
|
self,
|
||||||
@@ -251,7 +253,7 @@ class RemoteTable(Table):
|
|||||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
|
|
||||||
"""
|
"""
|
||||||
self._loop.run_until_complete(
|
LOOP.run(
|
||||||
self._table.add(
|
self._table.add(
|
||||||
data, mode=mode, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
data, mode=mode, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||||
)
|
)
|
||||||
@@ -339,9 +341,7 @@ class RemoteTable(Table):
|
|||||||
def _execute_query(
|
def _execute_query(
|
||||||
self, query: Query, batch_size: Optional[int] = None
|
self, query: Query, batch_size: Optional[int] = None
|
||||||
) -> pa.RecordBatchReader:
|
) -> pa.RecordBatchReader:
|
||||||
return self._loop.run_until_complete(
|
return LOOP.run(self._table._execute_query(query, batch_size=batch_size))
|
||||||
self._table._execute_query(query, batch_size=batch_size)
|
|
||||||
)
|
|
||||||
|
|
||||||
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
|
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
|
||||||
"""Returns a [`LanceMergeInsertBuilder`][lancedb.merge.LanceMergeInsertBuilder]
|
"""Returns a [`LanceMergeInsertBuilder`][lancedb.merge.LanceMergeInsertBuilder]
|
||||||
@@ -358,9 +358,7 @@ class RemoteTable(Table):
|
|||||||
on_bad_vectors: str,
|
on_bad_vectors: str,
|
||||||
fill_value: float,
|
fill_value: float,
|
||||||
):
|
):
|
||||||
self._loop.run_until_complete(
|
LOOP.run(self._table._do_merge(merge, new_data, on_bad_vectors, fill_value))
|
||||||
self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)
|
|
||||||
)
|
|
||||||
|
|
||||||
def delete(self, predicate: str):
|
def delete(self, predicate: str):
|
||||||
"""Delete rows from the table.
|
"""Delete rows from the table.
|
||||||
@@ -409,7 +407,7 @@ class RemoteTable(Table):
|
|||||||
x vector _distance # doctest: +SKIP
|
x vector _distance # doctest: +SKIP
|
||||||
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
|
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
|
||||||
"""
|
"""
|
||||||
self._loop.run_until_complete(self._table.delete(predicate))
|
LOOP.run(self._table.delete(predicate))
|
||||||
|
|
||||||
def update(
|
def update(
|
||||||
self,
|
self,
|
||||||
@@ -459,7 +457,7 @@ class RemoteTable(Table):
|
|||||||
2 2 [10.0, 10.0] # doctest: +SKIP
|
2 2 [10.0, 10.0] # doctest: +SKIP
|
||||||
|
|
||||||
"""
|
"""
|
||||||
self._loop.run_until_complete(
|
LOOP.run(
|
||||||
self._table.update(where=where, updates=values, updates_sql=values_sql)
|
self._table.update(where=where, updates=values, updates_sql=values_sql)
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -489,7 +487,7 @@ class RemoteTable(Table):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def count_rows(self, filter: Optional[str] = None) -> int:
|
def count_rows(self, filter: Optional[str] = None) -> int:
|
||||||
return self._loop.run_until_complete(self._table.count_rows(filter))
|
return LOOP.run(self._table.count_rows(filter))
|
||||||
|
|
||||||
def add_columns(self, transforms: Dict[str, str]):
|
def add_columns(self, transforms: Dict[str, str]):
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
|
|||||||
@@ -41,7 +41,7 @@ class CohereReranker(Reranker):
|
|||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
model_name: str = "rerank-english-v2.0",
|
model_name: str = "rerank-english-v3.0",
|
||||||
column: str = "text",
|
column: str = "text",
|
||||||
top_n: Union[int, None] = None,
|
top_n: Union[int, None] = None,
|
||||||
return_score="relevance",
|
return_score="relevance",
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ import inspect
|
|||||||
import time
|
import time
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from datetime import timedelta
|
from datetime import datetime, timedelta
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
from typing import (
|
from typing import (
|
||||||
TYPE_CHECKING,
|
TYPE_CHECKING,
|
||||||
@@ -1012,6 +1012,39 @@ class Table(ABC):
|
|||||||
The names of the columns to drop.
|
The names of the columns to drop.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def checkout(self):
|
||||||
|
"""
|
||||||
|
Checks out a specific version of the Table
|
||||||
|
|
||||||
|
Any read operation on the table will now access the data at the checked out
|
||||||
|
version. As a consequence, calling this method will disable any read consistency
|
||||||
|
interval that was previously set.
|
||||||
|
|
||||||
|
This is a read-only operation that turns the table into a sort of "view"
|
||||||
|
or "detached head". Other table instances will not be affected. To make the
|
||||||
|
change permanent you can use the `[Self::restore]` method.
|
||||||
|
|
||||||
|
Any operation that modifies the table will fail while the table is in a checked
|
||||||
|
out state.
|
||||||
|
|
||||||
|
To return the table to a normal state use `[Self::checkout_latest]`
|
||||||
|
"""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def checkout_latest(self):
|
||||||
|
"""
|
||||||
|
Ensures the table is pointing at the latest version
|
||||||
|
|
||||||
|
This can be used to manually update a table when the read_consistency_interval
|
||||||
|
is None
|
||||||
|
It can also be used to undo a `[Self::checkout]` operation
|
||||||
|
"""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def list_versions(self):
|
||||||
|
"""List all versions of the table"""
|
||||||
|
|
||||||
@cached_property
|
@cached_property
|
||||||
def _dataset_uri(self) -> str:
|
def _dataset_uri(self) -> str:
|
||||||
return _table_uri(self._conn.uri, self.name)
|
return _table_uri(self._conn.uri, self.name)
|
||||||
@@ -1567,7 +1600,7 @@ class LanceTable(Table):
|
|||||||
"append" and "overwrite".
|
"append" and "overwrite".
|
||||||
on_bad_vectors: str, default "error"
|
on_bad_vectors: str, default "error"
|
||||||
What to do if any of the vectors are not the same size or contains NaNs.
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
One of "error", "drop", "fill".
|
One of "error", "drop", "fill", "null".
|
||||||
fill_value: float, default 0.
|
fill_value: float, default 0.
|
||||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
|
|
||||||
@@ -1851,7 +1884,7 @@ class LanceTable(Table):
|
|||||||
data but will validate against any schema that's specified.
|
data but will validate against any schema that's specified.
|
||||||
on_bad_vectors: str, default "error"
|
on_bad_vectors: str, default "error"
|
||||||
What to do if any of the vectors are not the same size or contains NaNs.
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
One of "error", "drop", "fill".
|
One of "error", "drop", "fill", "null".
|
||||||
fill_value: float, default 0.
|
fill_value: float, default 0.
|
||||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
embedding_functions: list of EmbeddingFunctionModel, default None
|
embedding_functions: list of EmbeddingFunctionModel, default None
|
||||||
@@ -1959,6 +1992,7 @@ class LanceTable(Table):
|
|||||||
"metric": query.metric,
|
"metric": query.metric,
|
||||||
"nprobes": query.nprobes,
|
"nprobes": query.nprobes,
|
||||||
"refine_factor": query.refine_factor,
|
"refine_factor": query.refine_factor,
|
||||||
|
"ef": query.ef,
|
||||||
}
|
}
|
||||||
return ds.scanner(
|
return ds.scanner(
|
||||||
columns=query.columns,
|
columns=query.columns,
|
||||||
@@ -2151,13 +2185,11 @@ def _sanitize_schema(
|
|||||||
vector column to fixed_size_list(float32) if necessary.
|
vector column to fixed_size_list(float32) if necessary.
|
||||||
on_bad_vectors: str, default "error"
|
on_bad_vectors: str, default "error"
|
||||||
What to do if any of the vectors are not the same size or contains NaNs.
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
One of "error", "drop", "fill".
|
One of "error", "drop", "fill", "null".
|
||||||
fill_value: float, default 0.
|
fill_value: float, default 0.
|
||||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
"""
|
"""
|
||||||
if schema is not None:
|
if schema is not None:
|
||||||
if data.schema == schema:
|
|
||||||
return data
|
|
||||||
# cast the columns to the expected types
|
# cast the columns to the expected types
|
||||||
data = data.combine_chunks()
|
data = data.combine_chunks()
|
||||||
for field in schema:
|
for field in schema:
|
||||||
@@ -2177,6 +2209,7 @@ def _sanitize_schema(
|
|||||||
vector_column_name=field.name,
|
vector_column_name=field.name,
|
||||||
on_bad_vectors=on_bad_vectors,
|
on_bad_vectors=on_bad_vectors,
|
||||||
fill_value=fill_value,
|
fill_value=fill_value,
|
||||||
|
table_schema=schema,
|
||||||
)
|
)
|
||||||
return pa.Table.from_arrays(
|
return pa.Table.from_arrays(
|
||||||
[data[name] for name in schema.names], schema=schema
|
[data[name] for name in schema.names], schema=schema
|
||||||
@@ -2197,6 +2230,7 @@ def _sanitize_schema(
|
|||||||
def _sanitize_vector_column(
|
def _sanitize_vector_column(
|
||||||
data: pa.Table,
|
data: pa.Table,
|
||||||
vector_column_name: str,
|
vector_column_name: str,
|
||||||
|
table_schema: Optional[pa.Schema] = None,
|
||||||
on_bad_vectors: str = "error",
|
on_bad_vectors: str = "error",
|
||||||
fill_value: float = 0.0,
|
fill_value: float = 0.0,
|
||||||
) -> pa.Table:
|
) -> pa.Table:
|
||||||
@@ -2211,12 +2245,16 @@ def _sanitize_vector_column(
|
|||||||
The name of the vector column.
|
The name of the vector column.
|
||||||
on_bad_vectors: str, default "error"
|
on_bad_vectors: str, default "error"
|
||||||
What to do if any of the vectors are not the same size or contains NaNs.
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
One of "error", "drop", "fill".
|
One of "error", "drop", "fill", "null".
|
||||||
fill_value: float, default 0.0
|
fill_value: float, default 0.0
|
||||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
"""
|
"""
|
||||||
# ChunkedArray is annoying to work with, so we combine chunks here
|
# ChunkedArray is annoying to work with, so we combine chunks here
|
||||||
vec_arr = data[vector_column_name].combine_chunks()
|
vec_arr = data[vector_column_name].combine_chunks()
|
||||||
|
if table_schema is not None:
|
||||||
|
field = table_schema.field(vector_column_name)
|
||||||
|
else:
|
||||||
|
field = None
|
||||||
typ = data[vector_column_name].type
|
typ = data[vector_column_name].type
|
||||||
if pa.types.is_list(typ) or pa.types.is_large_list(typ):
|
if pa.types.is_list(typ) or pa.types.is_large_list(typ):
|
||||||
# if it's a variable size list array,
|
# if it's a variable size list array,
|
||||||
@@ -2243,7 +2281,11 @@ def _sanitize_vector_column(
|
|||||||
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
if pc.any(pc.is_null(vec_arr.values, nan_is_null=True)).as_py():
|
if (
|
||||||
|
field is not None
|
||||||
|
and not field.nullable
|
||||||
|
and pc.any(pc.is_null(vec_arr.values)).as_py()
|
||||||
|
) or (pc.any(pc.is_nan(vec_arr.values)).as_py()):
|
||||||
data = _sanitize_nans(
|
data = _sanitize_nans(
|
||||||
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
||||||
)
|
)
|
||||||
@@ -2287,6 +2329,12 @@ def _sanitize_jagged(data, fill_value, on_bad_vectors, vec_arr, vector_column_na
|
|||||||
)
|
)
|
||||||
elif on_bad_vectors == "drop":
|
elif on_bad_vectors == "drop":
|
||||||
data = data.filter(correct_ndims)
|
data = data.filter(correct_ndims)
|
||||||
|
elif on_bad_vectors == "null":
|
||||||
|
data = data.set_column(
|
||||||
|
data.column_names.index(vector_column_name),
|
||||||
|
vector_column_name,
|
||||||
|
pc.if_else(correct_ndims, vec_arr, pa.scalar(None)),
|
||||||
|
)
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
@@ -2303,7 +2351,8 @@ def _sanitize_nans(
|
|||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Vector column {vector_column_name} has NaNs. "
|
f"Vector column {vector_column_name} has NaNs. "
|
||||||
"Set on_bad_vectors='drop' to remove them, or "
|
"Set on_bad_vectors='drop' to remove them, or "
|
||||||
"set on_bad_vectors='fill' and fill_value=<value> to replace them."
|
"set on_bad_vectors='fill' and fill_value=<value> to replace them. "
|
||||||
|
"Or set on_bad_vectors='null' to replace them with null."
|
||||||
)
|
)
|
||||||
elif on_bad_vectors == "fill":
|
elif on_bad_vectors == "fill":
|
||||||
if fill_value is None:
|
if fill_value is None:
|
||||||
@@ -2323,6 +2372,17 @@ def _sanitize_nans(
|
|||||||
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
|
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
|
||||||
not_nulls = np.any(np_arr, axis=1)
|
not_nulls = np.any(np_arr, axis=1)
|
||||||
data = data.filter(~not_nulls)
|
data = data.filter(~not_nulls)
|
||||||
|
elif on_bad_vectors == "null":
|
||||||
|
# null = pa.nulls(len(vec_arr)).cast(vec_arr.type)
|
||||||
|
# values = pc.if_else(pc.is_nan(vec_arr.values), fill_value, vec_arr.values)
|
||||||
|
np_arr = np.isnan(vec_arr.values.to_numpy(zero_copy_only=False))
|
||||||
|
np_arr = np_arr.reshape(-1, vec_arr.type.list_size)
|
||||||
|
no_nans = np.any(np_arr, axis=1)
|
||||||
|
data = data.set_column(
|
||||||
|
data.column_names.index(vector_column_name),
|
||||||
|
vector_column_name,
|
||||||
|
pc.if_else(no_nans, vec_arr, pa.scalar(None)),
|
||||||
|
)
|
||||||
return data
|
return data
|
||||||
|
|
||||||
|
|
||||||
@@ -2588,7 +2648,7 @@ class AsyncTable:
|
|||||||
"append" and "overwrite".
|
"append" and "overwrite".
|
||||||
on_bad_vectors: str, default "error"
|
on_bad_vectors: str, default "error"
|
||||||
What to do if any of the vectors are not the same size or contains NaNs.
|
What to do if any of the vectors are not the same size or contains NaNs.
|
||||||
One of "error", "drop", "fill".
|
One of "error", "drop", "fill", "null".
|
||||||
fill_value: float, default 0.
|
fill_value: float, default 0.
|
||||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
|
|
||||||
@@ -2671,7 +2731,7 @@ class AsyncTable:
|
|||||||
|
|
||||||
def vector_search(
|
def vector_search(
|
||||||
self,
|
self,
|
||||||
query_vector: Optional[Union[VEC, Tuple]] = None,
|
query_vector: Union[VEC, Tuple],
|
||||||
) -> AsyncVectorQuery:
|
) -> AsyncVectorQuery:
|
||||||
"""
|
"""
|
||||||
Search the table with a given query vector.
|
Search the table with a given query vector.
|
||||||
@@ -2710,6 +2770,8 @@ class AsyncTable:
|
|||||||
async_query = async_query.refine_factor(query.refine_factor)
|
async_query = async_query.refine_factor(query.refine_factor)
|
||||||
if query.vector_column:
|
if query.vector_column:
|
||||||
async_query = async_query.column(query.vector_column)
|
async_query = async_query.column(query.vector_column)
|
||||||
|
if query.ef:
|
||||||
|
async_query = async_query.ef(query.ef)
|
||||||
|
|
||||||
if not query.prefilter:
|
if not query.prefilter:
|
||||||
async_query = async_query.postfilter()
|
async_query = async_query.postfilter()
|
||||||
@@ -2873,6 +2935,19 @@ class AsyncTable:
|
|||||||
"""
|
"""
|
||||||
return await self._inner.version()
|
return await self._inner.version()
|
||||||
|
|
||||||
|
async def list_versions(self):
|
||||||
|
"""
|
||||||
|
List all versions of the table
|
||||||
|
"""
|
||||||
|
versions = await self._inner.list_versions()
|
||||||
|
for v in versions:
|
||||||
|
ts_nanos = v["timestamp"]
|
||||||
|
v["timestamp"] = datetime.fromtimestamp(ts_nanos // 1e9) + timedelta(
|
||||||
|
microseconds=(ts_nanos % 1e9) // 1e3
|
||||||
|
)
|
||||||
|
|
||||||
|
return versions
|
||||||
|
|
||||||
async def checkout(self, version):
|
async def checkout(self, version):
|
||||||
"""
|
"""
|
||||||
Checks out a specific version of the Table
|
Checks out a specific version of the Table
|
||||||
|
|||||||
@@ -81,28 +81,36 @@ def test_embedding_function(tmp_path):
|
|||||||
|
|
||||||
|
|
||||||
def test_embedding_with_bad_results(tmp_path):
|
def test_embedding_with_bad_results(tmp_path):
|
||||||
@register("mock-embedding")
|
@register("null-embedding")
|
||||||
class MockEmbeddingFunction(TextEmbeddingFunction):
|
class NullEmbeddingFunction(TextEmbeddingFunction):
|
||||||
def ndims(self):
|
def ndims(self):
|
||||||
return 128
|
return 128
|
||||||
|
|
||||||
def generate_embeddings(
|
def generate_embeddings(
|
||||||
self, texts: Union[List[str], np.ndarray]
|
self, texts: Union[List[str], np.ndarray]
|
||||||
) -> list[Union[np.array, None]]:
|
) -> list[Union[np.array, None]]:
|
||||||
return [
|
# Return None, which is bad if field is non-nullable
|
||||||
None if i % 2 == 0 else np.random.randn(self.ndims())
|
a = [
|
||||||
|
np.full(self.ndims(), np.nan)
|
||||||
|
if i % 2 == 0
|
||||||
|
else np.random.randn(self.ndims())
|
||||||
for i in range(len(texts))
|
for i in range(len(texts))
|
||||||
]
|
]
|
||||||
|
return a
|
||||||
|
|
||||||
db = lancedb.connect(tmp_path)
|
db = lancedb.connect(tmp_path)
|
||||||
registry = EmbeddingFunctionRegistry.get_instance()
|
registry = EmbeddingFunctionRegistry.get_instance()
|
||||||
model = registry.get("mock-embedding").create()
|
model = registry.get("null-embedding").create()
|
||||||
|
|
||||||
class Schema(LanceModel):
|
class Schema(LanceModel):
|
||||||
text: str = model.SourceField()
|
text: str = model.SourceField()
|
||||||
vector: Vector(model.ndims()) = model.VectorField()
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
table = db.create_table("test", schema=Schema, mode="overwrite")
|
table = db.create_table("test", schema=Schema, mode="overwrite")
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
# Default on_bad_vectors is "error"
|
||||||
|
table.add([{"text": "hello world"}])
|
||||||
|
|
||||||
table.add(
|
table.add(
|
||||||
[{"text": "hello world"}, {"text": "bar"}],
|
[{"text": "hello world"}, {"text": "bar"}],
|
||||||
on_bad_vectors="drop",
|
on_bad_vectors="drop",
|
||||||
@@ -112,13 +120,33 @@ def test_embedding_with_bad_results(tmp_path):
|
|||||||
assert len(table) == 1
|
assert len(table) == 1
|
||||||
assert df.iloc[0]["text"] == "bar"
|
assert df.iloc[0]["text"] == "bar"
|
||||||
|
|
||||||
# table = db.create_table("test2", schema=Schema, mode="overwrite")
|
@register("nan-embedding")
|
||||||
# table.add(
|
class NanEmbeddingFunction(TextEmbeddingFunction):
|
||||||
# [{"text": "hello world"}, {"text": "bar"}],
|
def ndims(self):
|
||||||
# )
|
return 128
|
||||||
# assert len(table) == 2
|
|
||||||
# tbl = table.to_arrow()
|
def generate_embeddings(
|
||||||
# assert tbl["vector"].null_count == 1
|
self, texts: Union[List[str], np.ndarray]
|
||||||
|
) -> list[Union[np.array, None]]:
|
||||||
|
# Return NaN to produce bad vectors
|
||||||
|
return [
|
||||||
|
[np.NAN] * 128 if i % 2 == 0 else np.random.randn(self.ndims())
|
||||||
|
for i in range(len(texts))
|
||||||
|
]
|
||||||
|
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
registry = EmbeddingFunctionRegistry.get_instance()
|
||||||
|
model = registry.get("nan-embedding").create()
|
||||||
|
|
||||||
|
table = db.create_table("test2", schema=Schema, mode="overwrite")
|
||||||
|
table.alter_columns(dict(path="vector", nullable=True))
|
||||||
|
table.add(
|
||||||
|
[{"text": "hello world"}, {"text": "bar"}],
|
||||||
|
on_bad_vectors="null",
|
||||||
|
)
|
||||||
|
assert len(table) == 2
|
||||||
|
tbl = table.to_arrow()
|
||||||
|
assert tbl["vector"].null_count == 1
|
||||||
|
|
||||||
|
|
||||||
def test_with_existing_vectors(tmp_path):
|
def test_with_existing_vectors(tmp_path):
|
||||||
|
|||||||
@@ -1,15 +1,6 @@
|
|||||||
# Copyright (c) 2023. LanceDB Developers
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
#
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
import importlib
|
import importlib
|
||||||
import io
|
import io
|
||||||
import os
|
import os
|
||||||
@@ -17,6 +8,7 @@ import os
|
|||||||
import lancedb
|
import lancedb
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
import pyarrow as pa
|
||||||
import pytest
|
import pytest
|
||||||
from lancedb.embeddings import get_registry
|
from lancedb.embeddings import get_registry
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
@@ -444,6 +436,30 @@ def test_watsonx_embedding(tmp_path):
|
|||||||
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
|
assert tbl.search("hello").limit(1).to_pandas()["text"][0] == "hello world"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.slow
|
||||||
|
@pytest.mark.skipif(
|
||||||
|
os.environ.get("OPENAI_API_KEY") is None, reason="OPENAI_API_KEY not set"
|
||||||
|
)
|
||||||
|
def test_openai_with_empty_strs(tmp_path):
|
||||||
|
model = get_registry().get("openai").create(max_retries=0)
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = model.SourceField()
|
||||||
|
vector: Vector(model.ndims()) = model.VectorField()
|
||||||
|
|
||||||
|
df = pd.DataFrame({"text": ["hello world", ""]})
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(df, on_bad_vectors="skip")
|
||||||
|
tb = tbl.to_arrow()
|
||||||
|
assert tb.schema.field_by_name("vector").type == pa.list_(
|
||||||
|
pa.float32(), model.ndims()
|
||||||
|
)
|
||||||
|
assert len(tb) == 2
|
||||||
|
assert tb["vector"].is_null().to_pylist() == [False, True]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.slow
|
@pytest.mark.slow
|
||||||
@pytest.mark.skipif(
|
@pytest.mark.skipif(
|
||||||
importlib.util.find_spec("ollama") is None, reason="Ollama not installed"
|
importlib.util.find_spec("ollama") is None, reason="Ollama not installed"
|
||||||
|
|||||||
@@ -1,16 +1,5 @@
|
|||||||
# Copyright 2023 LanceDB Developers
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
#
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
import json
|
import json
|
||||||
import sys
|
import sys
|
||||||
@@ -172,6 +161,26 @@ def test_pydantic_to_arrow_py38():
|
|||||||
assert schema == expect_schema
|
assert schema == expect_schema
|
||||||
|
|
||||||
|
|
||||||
|
def test_nullable_vector():
|
||||||
|
class NullableModel(pydantic.BaseModel):
|
||||||
|
vec: Vector(16, nullable=False)
|
||||||
|
|
||||||
|
schema = pydantic_to_schema(NullableModel)
|
||||||
|
assert schema == pa.schema([pa.field("vec", pa.list_(pa.float32(), 16), False)])
|
||||||
|
|
||||||
|
class DefaultModel(pydantic.BaseModel):
|
||||||
|
vec: Vector(16)
|
||||||
|
|
||||||
|
schema = pydantic_to_schema(DefaultModel)
|
||||||
|
assert schema == pa.schema([pa.field("vec", pa.list_(pa.float32(), 16), True)])
|
||||||
|
|
||||||
|
class NotNullableModel(pydantic.BaseModel):
|
||||||
|
vec: Vector(16)
|
||||||
|
|
||||||
|
schema = pydantic_to_schema(NotNullableModel)
|
||||||
|
assert schema == pa.schema([pa.field("vec", pa.list_(pa.float32(), 16), True)])
|
||||||
|
|
||||||
|
|
||||||
def test_fixed_size_list_field():
|
def test_fixed_size_list_field():
|
||||||
class TestModel(pydantic.BaseModel):
|
class TestModel(pydantic.BaseModel):
|
||||||
vec: Vector(16)
|
vec: Vector(16)
|
||||||
@@ -192,7 +201,7 @@ def test_fixed_size_list_field():
|
|||||||
schema = pydantic_to_schema(TestModel)
|
schema = pydantic_to_schema(TestModel)
|
||||||
assert schema == pa.schema(
|
assert schema == pa.schema(
|
||||||
[
|
[
|
||||||
pa.field("vec", pa.list_(pa.float32(), 16), False),
|
pa.field("vec", pa.list_(pa.float32(), 16)),
|
||||||
pa.field("li", pa.list_(pa.int64()), False),
|
pa.field("li", pa.list_(pa.int64()), False),
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -1,21 +1,9 @@
|
|||||||
# Copyright 2023 LanceDB Developers
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
#
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import unittest.mock as mock
|
import unittest.mock as mock
|
||||||
from datetime import timedelta
|
from datetime import timedelta
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import lance
|
|
||||||
import lancedb
|
import lancedb
|
||||||
from lancedb.index import IvfPq
|
from lancedb.index import IvfPq
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -23,41 +11,15 @@ import pandas.testing as tm
|
|||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
import pytest
|
import pytest
|
||||||
import pytest_asyncio
|
import pytest_asyncio
|
||||||
from lancedb.db import LanceDBConnection
|
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
from lancedb.query import AsyncQueryBase, LanceVectorQueryBuilder, Query
|
from lancedb.query import AsyncQueryBase, LanceVectorQueryBuilder, Query
|
||||||
from lancedb.table import AsyncTable, LanceTable
|
from lancedb.table import AsyncTable, LanceTable
|
||||||
|
|
||||||
|
|
||||||
class MockTable:
|
@pytest.fixture(scope="module")
|
||||||
def __init__(self, tmp_path):
|
def table(tmpdir_factory) -> lancedb.table.Table:
|
||||||
self.uri = tmp_path
|
tmp_path = str(tmpdir_factory.mktemp("data"))
|
||||||
self._conn = LanceDBConnection(self.uri)
|
db = lancedb.connect(tmp_path)
|
||||||
|
|
||||||
def to_lance(self):
|
|
||||||
return lance.dataset(self.uri)
|
|
||||||
|
|
||||||
def _execute_query(self, query, batch_size: Optional[int] = None):
|
|
||||||
ds = self.to_lance()
|
|
||||||
return ds.scanner(
|
|
||||||
columns=query.columns,
|
|
||||||
filter=query.filter,
|
|
||||||
prefilter=query.prefilter,
|
|
||||||
nearest={
|
|
||||||
"column": query.vector_column,
|
|
||||||
"q": query.vector,
|
|
||||||
"k": query.k,
|
|
||||||
"metric": query.metric,
|
|
||||||
"nprobes": query.nprobes,
|
|
||||||
"refine_factor": query.refine_factor,
|
|
||||||
},
|
|
||||||
batch_size=batch_size,
|
|
||||||
offset=query.offset,
|
|
||||||
).to_reader()
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def table(tmp_path) -> MockTable:
|
|
||||||
df = pa.table(
|
df = pa.table(
|
||||||
{
|
{
|
||||||
"vector": pa.array(
|
"vector": pa.array(
|
||||||
@@ -68,8 +30,7 @@ def table(tmp_path) -> MockTable:
|
|||||||
"float_field": pa.array([1.0, 2.0]),
|
"float_field": pa.array([1.0, 2.0]),
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
lance.write_dataset(df, tmp_path)
|
return db.create_table("test", df)
|
||||||
return MockTable(tmp_path)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest_asyncio.fixture
|
@pytest_asyncio.fixture
|
||||||
@@ -126,6 +87,12 @@ def test_query_builder(table):
|
|||||||
assert all(np.array(rs[0]["vector"]) == [1, 2])
|
assert all(np.array(rs[0]["vector"]) == [1, 2])
|
||||||
|
|
||||||
|
|
||||||
|
def test_with_row_id(table: lancedb.table.Table):
|
||||||
|
rs = table.search().with_row_id(True).to_arrow()
|
||||||
|
assert "_rowid" in rs.column_names
|
||||||
|
assert rs["_rowid"].to_pylist() == [0, 1]
|
||||||
|
|
||||||
|
|
||||||
def test_vector_query_with_no_limit(table):
|
def test_vector_query_with_no_limit(table):
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(0).select(
|
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(0).select(
|
||||||
@@ -365,6 +332,12 @@ async def test_query_to_pandas_async(table_async: AsyncTable):
|
|||||||
assert df.shape == (0, 4)
|
assert df.shape == (0, 4)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_none_query(table_async: AsyncTable):
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
await table_async.query().nearest_to(None).to_arrow()
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_fast_search_async(tmp_path):
|
async def test_fast_search_async(tmp_path):
|
||||||
db = await lancedb.connect_async(tmp_path)
|
db = await lancedb.connect_async(tmp_path)
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||||
|
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
import contextlib
|
import contextlib
|
||||||
from datetime import timedelta
|
from datetime import timedelta
|
||||||
import http.server
|
import http.server
|
||||||
@@ -103,6 +104,47 @@ async def test_async_remote_db():
|
|||||||
assert table_names == []
|
assert table_names == []
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_async_checkout():
|
||||||
|
def handler(request):
|
||||||
|
if request.path == "/v1/table/test/describe/":
|
||||||
|
request.send_response(200)
|
||||||
|
request.send_header("Content-Type", "application/json")
|
||||||
|
request.end_headers()
|
||||||
|
response = json.dumps({"version": 42, "schema": {"fields": []}})
|
||||||
|
request.wfile.write(response.encode())
|
||||||
|
return
|
||||||
|
|
||||||
|
content_len = int(request.headers.get("Content-Length"))
|
||||||
|
body = request.rfile.read(content_len)
|
||||||
|
body = json.loads(body)
|
||||||
|
|
||||||
|
print("body is", body)
|
||||||
|
|
||||||
|
count = 0
|
||||||
|
if body["version"] == 1:
|
||||||
|
count = 100
|
||||||
|
elif body["version"] == 2:
|
||||||
|
count = 200
|
||||||
|
elif body["version"] is None:
|
||||||
|
count = 300
|
||||||
|
|
||||||
|
request.send_response(200)
|
||||||
|
request.send_header("Content-Type", "application/json")
|
||||||
|
request.end_headers()
|
||||||
|
request.wfile.write(json.dumps(count).encode())
|
||||||
|
|
||||||
|
async with mock_lancedb_connection_async(handler) as db:
|
||||||
|
table = await db.open_table("test")
|
||||||
|
assert await table.count_rows() == 300
|
||||||
|
await table.checkout(1)
|
||||||
|
assert await table.count_rows() == 100
|
||||||
|
await table.checkout(2)
|
||||||
|
assert await table.count_rows() == 200
|
||||||
|
await table.checkout_latest()
|
||||||
|
assert await table.count_rows() == 300
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_http_error():
|
async def test_http_error():
|
||||||
request_id_holder = {"request_id": None}
|
request_id_holder = {"request_id": None}
|
||||||
@@ -146,6 +188,47 @@ async def test_retry_error():
|
|||||||
assert cause.status_code == 429
|
assert cause.status_code == 429
|
||||||
|
|
||||||
|
|
||||||
|
def test_table_add_in_threadpool():
|
||||||
|
def handler(request):
|
||||||
|
if request.path == "/v1/table/test/insert/":
|
||||||
|
request.send_response(200)
|
||||||
|
request.end_headers()
|
||||||
|
elif request.path == "/v1/table/test/create/":
|
||||||
|
request.send_response(200)
|
||||||
|
request.send_header("Content-Type", "application/json")
|
||||||
|
request.end_headers()
|
||||||
|
request.wfile.write(b"{}")
|
||||||
|
elif request.path == "/v1/table/test/describe/":
|
||||||
|
request.send_response(200)
|
||||||
|
request.send_header("Content-Type", "application/json")
|
||||||
|
request.end_headers()
|
||||||
|
payload = json.dumps(
|
||||||
|
dict(
|
||||||
|
version=1,
|
||||||
|
schema=dict(
|
||||||
|
fields=[
|
||||||
|
dict(name="id", type={"type": "int64"}, nullable=False),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
request.wfile.write(payload.encode())
|
||||||
|
else:
|
||||||
|
request.send_response(404)
|
||||||
|
request.end_headers()
|
||||||
|
|
||||||
|
with mock_lancedb_connection(handler) as db:
|
||||||
|
table = db.create_table("test", [{"id": 1}])
|
||||||
|
with ThreadPoolExecutor(3) as executor:
|
||||||
|
futures = []
|
||||||
|
for _ in range(10):
|
||||||
|
future = executor.submit(table.add, [{"id": 1}])
|
||||||
|
futures.append(future)
|
||||||
|
|
||||||
|
for future in futures:
|
||||||
|
future.result()
|
||||||
|
|
||||||
|
|
||||||
@contextlib.contextmanager
|
@contextlib.contextmanager
|
||||||
def query_test_table(query_handler):
|
def query_test_table(query_handler):
|
||||||
def handler(request):
|
def handler(request):
|
||||||
@@ -185,8 +268,10 @@ def test_query_sync_minimal():
|
|||||||
"k": 10,
|
"k": 10,
|
||||||
"prefilter": False,
|
"prefilter": False,
|
||||||
"refine_factor": None,
|
"refine_factor": None,
|
||||||
|
"ef": None,
|
||||||
"vector": [1.0, 2.0, 3.0],
|
"vector": [1.0, 2.0, 3.0],
|
||||||
"nprobes": 20,
|
"nprobes": 20,
|
||||||
|
"version": None,
|
||||||
}
|
}
|
||||||
|
|
||||||
return pa.table({"id": [1, 2, 3]})
|
return pa.table({"id": [1, 2, 3]})
|
||||||
@@ -204,6 +289,7 @@ def test_query_sync_empty_query():
|
|||||||
"filter": "true",
|
"filter": "true",
|
||||||
"vector": [],
|
"vector": [],
|
||||||
"columns": ["id"],
|
"columns": ["id"],
|
||||||
|
"version": None,
|
||||||
}
|
}
|
||||||
|
|
||||||
return pa.table({"id": [1, 2, 3]})
|
return pa.table({"id": [1, 2, 3]})
|
||||||
@@ -223,11 +309,13 @@ def test_query_sync_maximal():
|
|||||||
"refine_factor": 10,
|
"refine_factor": 10,
|
||||||
"vector": [1.0, 2.0, 3.0],
|
"vector": [1.0, 2.0, 3.0],
|
||||||
"nprobes": 5,
|
"nprobes": 5,
|
||||||
|
"ef": None,
|
||||||
"filter": "id > 0",
|
"filter": "id > 0",
|
||||||
"columns": ["id", "name"],
|
"columns": ["id", "name"],
|
||||||
"vector_column": "vector2",
|
"vector_column": "vector2",
|
||||||
"fast_search": True,
|
"fast_search": True,
|
||||||
"with_row_id": True,
|
"with_row_id": True,
|
||||||
|
"version": None,
|
||||||
}
|
}
|
||||||
|
|
||||||
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
|
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
|
||||||
@@ -266,6 +354,7 @@ def test_query_sync_fts():
|
|||||||
},
|
},
|
||||||
"k": 10,
|
"k": 10,
|
||||||
"vector": [],
|
"vector": [],
|
||||||
|
"version": None,
|
||||||
}
|
}
|
||||||
|
|
||||||
return pa.table({"id": [1, 2, 3]})
|
return pa.table({"id": [1, 2, 3]})
|
||||||
@@ -282,6 +371,7 @@ def test_query_sync_fts():
|
|||||||
"k": 42,
|
"k": 42,
|
||||||
"vector": [],
|
"vector": [],
|
||||||
"with_row_id": True,
|
"with_row_id": True,
|
||||||
|
"version": None,
|
||||||
}
|
}
|
||||||
|
|
||||||
return pa.table({"id": [1, 2, 3]})
|
return pa.table({"id": [1, 2, 3]})
|
||||||
@@ -307,6 +397,7 @@ def test_query_sync_hybrid():
|
|||||||
"k": 42,
|
"k": 42,
|
||||||
"vector": [],
|
"vector": [],
|
||||||
"with_row_id": True,
|
"with_row_id": True,
|
||||||
|
"version": None,
|
||||||
}
|
}
|
||||||
return pa.table({"_rowid": [1, 2, 3], "_score": [0.1, 0.2, 0.3]})
|
return pa.table({"_rowid": [1, 2, 3], "_score": [0.1, 0.2, 0.3]})
|
||||||
else:
|
else:
|
||||||
@@ -318,7 +409,9 @@ def test_query_sync_hybrid():
|
|||||||
"refine_factor": None,
|
"refine_factor": None,
|
||||||
"vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
"vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||||
"nprobes": 20,
|
"nprobes": 20,
|
||||||
|
"ef": None,
|
||||||
"with_row_id": True,
|
"with_row_id": True,
|
||||||
|
"version": None,
|
||||||
}
|
}
|
||||||
return pa.table({"_rowid": [1, 2, 3], "_distance": [0.1, 0.2, 0.3]})
|
return pa.table({"_rowid": [1, 2, 3], "_distance": [0.1, 0.2, 0.3]})
|
||||||
|
|
||||||
|
|||||||
@@ -240,6 +240,121 @@ def test_add(db):
|
|||||||
_add(table, schema)
|
_add(table, schema)
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_subschema(tmp_path):
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
schema = pa.schema(
|
||||||
|
[
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||||
|
pa.field("item", pa.string(), nullable=True),
|
||||||
|
pa.field("price", pa.float64(), nullable=False),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
table = db.create_table("test", schema=schema)
|
||||||
|
|
||||||
|
data = {"price": 10.0, "item": "foo"}
|
||||||
|
table.add([data])
|
||||||
|
data = {"price": 2.0, "vector": [3.1, 4.1]}
|
||||||
|
table.add([data])
|
||||||
|
data = {"price": 3.0, "vector": [5.9, 26.5], "item": "bar"}
|
||||||
|
table.add([data])
|
||||||
|
|
||||||
|
expected = pa.table(
|
||||||
|
{
|
||||||
|
"vector": [None, [3.1, 4.1], [5.9, 26.5]],
|
||||||
|
"item": ["foo", None, "bar"],
|
||||||
|
"price": [10.0, 2.0, 3.0],
|
||||||
|
},
|
||||||
|
schema=schema,
|
||||||
|
)
|
||||||
|
assert table.to_arrow() == expected
|
||||||
|
|
||||||
|
data = {"item": "foo"}
|
||||||
|
# We can't omit a column if it's not nullable
|
||||||
|
with pytest.raises(OSError, match="Invalid user input"):
|
||||||
|
table.add([data])
|
||||||
|
|
||||||
|
# We can add it if we make the column nullable
|
||||||
|
table.alter_columns(dict(path="price", nullable=True))
|
||||||
|
table.add([data])
|
||||||
|
|
||||||
|
expected_schema = pa.schema(
|
||||||
|
[
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||||
|
pa.field("item", pa.string(), nullable=True),
|
||||||
|
pa.field("price", pa.float64(), nullable=True),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
expected = pa.table(
|
||||||
|
{
|
||||||
|
"vector": [None, [3.1, 4.1], [5.9, 26.5], None],
|
||||||
|
"item": ["foo", None, "bar", "foo"],
|
||||||
|
"price": [10.0, 2.0, 3.0, None],
|
||||||
|
},
|
||||||
|
schema=expected_schema,
|
||||||
|
)
|
||||||
|
assert table.to_arrow() == expected
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_nullability(tmp_path):
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
schema = pa.schema(
|
||||||
|
[
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=False),
|
||||||
|
pa.field("id", pa.string(), nullable=False),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
table = db.create_table("test", schema=schema)
|
||||||
|
|
||||||
|
nullable_schema = pa.schema(
|
||||||
|
[
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||||
|
pa.field("id", pa.string(), nullable=True),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
data = pa.table(
|
||||||
|
{
|
||||||
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
"id": ["foo", "bar"],
|
||||||
|
},
|
||||||
|
schema=nullable_schema,
|
||||||
|
)
|
||||||
|
# We can add nullable schema if it doesn't actually contain nulls
|
||||||
|
table.add(data)
|
||||||
|
|
||||||
|
expected = data.cast(schema)
|
||||||
|
assert table.to_arrow() == expected
|
||||||
|
|
||||||
|
data = pa.table(
|
||||||
|
{
|
||||||
|
"vector": [None],
|
||||||
|
"id": ["baz"],
|
||||||
|
},
|
||||||
|
schema=nullable_schema,
|
||||||
|
)
|
||||||
|
# We can't add nullable schema if it contains nulls
|
||||||
|
with pytest.raises(Exception, match="Vector column vector has NaNs"):
|
||||||
|
table.add(data)
|
||||||
|
|
||||||
|
# But we can make it nullable
|
||||||
|
table.alter_columns(dict(path="vector", nullable=True))
|
||||||
|
table.add(data)
|
||||||
|
|
||||||
|
expected_schema = pa.schema(
|
||||||
|
[
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 2), nullable=True),
|
||||||
|
pa.field("id", pa.string(), nullable=False),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
expected = pa.table(
|
||||||
|
{
|
||||||
|
"vector": [[3.1, 4.1], [5.9, 26.5], None],
|
||||||
|
"id": ["foo", "bar", "baz"],
|
||||||
|
},
|
||||||
|
schema=expected_schema,
|
||||||
|
)
|
||||||
|
assert table.to_arrow() == expected
|
||||||
|
|
||||||
|
|
||||||
def test_add_pydantic_model(db):
|
def test_add_pydantic_model(db):
|
||||||
# https://github.com/lancedb/lancedb/issues/562
|
# https://github.com/lancedb/lancedb/issues/562
|
||||||
|
|
||||||
|
|||||||
@@ -195,6 +195,10 @@ impl VectorQuery {
|
|||||||
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
self.inner = self.inner.clone().nprobes(nprobe as usize);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn ef(&mut self, ef: u32) {
|
||||||
|
self.inner = self.inner.clone().ef(ef as usize);
|
||||||
|
}
|
||||||
|
|
||||||
pub fn bypass_vector_index(&mut self) {
|
pub fn bypass_vector_index(&mut self) {
|
||||||
self.inner = self.inner.clone().bypass_vector_index()
|
self.inner = self.inner.clone().bypass_vector_index()
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ use lancedb::table::{
|
|||||||
use pyo3::{
|
use pyo3::{
|
||||||
exceptions::{PyRuntimeError, PyValueError},
|
exceptions::{PyRuntimeError, PyValueError},
|
||||||
pyclass, pymethods,
|
pyclass, pymethods,
|
||||||
types::{PyDict, PyDictMethods, PyString},
|
types::{IntoPyDict, PyDict, PyDictMethods, PyString},
|
||||||
Bound, FromPyObject, PyAny, PyRef, PyResult, Python, ToPyObject,
|
Bound, FromPyObject, PyAny, PyRef, PyResult, Python, ToPyObject,
|
||||||
};
|
};
|
||||||
use pyo3_asyncio_0_21::tokio::future_into_py;
|
use pyo3_asyncio_0_21::tokio::future_into_py;
|
||||||
@@ -246,6 +246,33 @@ impl Table {
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn list_versions(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
||||||
|
let inner = self_.inner_ref()?.clone();
|
||||||
|
future_into_py(self_.py(), async move {
|
||||||
|
let versions = inner.list_versions().await.infer_error()?;
|
||||||
|
let versions_as_dict = Python::with_gil(|py| {
|
||||||
|
versions
|
||||||
|
.iter()
|
||||||
|
.map(|v| {
|
||||||
|
let dict = PyDict::new_bound(py);
|
||||||
|
dict.set_item("version", v.version).unwrap();
|
||||||
|
dict.set_item(
|
||||||
|
"timestamp",
|
||||||
|
v.timestamp.timestamp_nanos_opt().unwrap_or_default(),
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let tup: Vec<(&String, &String)> = v.metadata.iter().collect();
|
||||||
|
dict.set_item("metadata", tup.into_py_dict(py)).unwrap();
|
||||||
|
dict.to_object(py)
|
||||||
|
})
|
||||||
|
.collect::<Vec<_>>()
|
||||||
|
});
|
||||||
|
|
||||||
|
Ok(versions_as_dict)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
pub fn checkout(self_: PyRef<'_, Self>, version: u64) -> PyResult<Bound<'_, PyAny>> {
|
pub fn checkout(self_: PyRef<'_, Self>, version: u64) -> PyResult<Bound<'_, PyAny>> {
|
||||||
let inner = self_.inner_ref()?.clone();
|
let inner = self_.inner_ref()?.clone();
|
||||||
future_into_py(self_.py(), async move {
|
future_into_py(self_.py(), async move {
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "lancedb-node"
|
name = "lancedb-node"
|
||||||
version = "0.13.0-beta.1"
|
version = "0.13.1-beta.0"
|
||||||
description = "Serverless, low-latency vector database for AI applications"
|
description = "Serverless, low-latency vector database for AI applications"
|
||||||
license.workspace = true
|
license.workspace = true
|
||||||
edition.workspace = true
|
edition.workspace = true
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "lancedb"
|
name = "lancedb"
|
||||||
version = "0.13.0-beta.1"
|
version = "0.13.1-beta.0"
|
||||||
edition.workspace = true
|
edition.workspace = true
|
||||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||||
license.workspace = true
|
license.workspace = true
|
||||||
@@ -46,9 +46,17 @@ serde = { version = "^1" }
|
|||||||
serde_json = { version = "1" }
|
serde_json = { version = "1" }
|
||||||
async-openai = { version = "0.20.0", optional = true }
|
async-openai = { version = "0.20.0", optional = true }
|
||||||
serde_with = { version = "3.8.1" }
|
serde_with = { version = "3.8.1" }
|
||||||
|
aws-sdk-bedrockruntime = { version = "1.27.0", optional = true }
|
||||||
# For remote feature
|
# For remote feature
|
||||||
reqwest = { version = "0.12.0", features = ["gzip", "json", "stream"], optional = true }
|
reqwest = { version = "0.12.0", default-features = false, features = [
|
||||||
rand = { version = "0.8.3", features = ["small_rng"], optional = true}
|
"charset",
|
||||||
|
"gzip",
|
||||||
|
"http2",
|
||||||
|
"json",
|
||||||
|
"macos-system-configuration",
|
||||||
|
"stream",
|
||||||
|
], optional = true }
|
||||||
|
rand = { version = "0.8.3", features = ["small_rng"], optional = true }
|
||||||
http = { version = "1", optional = true } # Matching what is in reqwest
|
http = { version = "1", optional = true } # Matching what is in reqwest
|
||||||
uuid = { version = "1.7.0", features = ["v4"], optional = true }
|
uuid = { version = "1.7.0", features = ["v4"], optional = true }
|
||||||
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
|
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
|
||||||
@@ -72,11 +80,13 @@ aws-config = { version = "1.0" }
|
|||||||
aws-smithy-runtime = { version = "1.3" }
|
aws-smithy-runtime = { version = "1.3" }
|
||||||
http-body = "1" # Matching reqwest
|
http-body = "1" # Matching reqwest
|
||||||
|
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
default = []
|
default = ["default-tls"]
|
||||||
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
|
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
|
||||||
fp16kernels = ["lance-linalg/fp16kernels"]
|
fp16kernels = ["lance-linalg/fp16kernels"]
|
||||||
s3-test = []
|
s3-test = []
|
||||||
|
bedrock = ["dep:aws-sdk-bedrockruntime"]
|
||||||
openai = ["dep:async-openai", "dep:reqwest"]
|
openai = ["dep:async-openai", "dep:reqwest"]
|
||||||
polars = ["dep:polars-arrow", "dep:polars"]
|
polars = ["dep:polars-arrow", "dep:polars"]
|
||||||
sentence-transformers = [
|
sentence-transformers = [
|
||||||
@@ -87,6 +97,11 @@ sentence-transformers = [
|
|||||||
"dep:tokenizers"
|
"dep:tokenizers"
|
||||||
]
|
]
|
||||||
|
|
||||||
|
# TLS
|
||||||
|
default-tls = ["reqwest?/default-tls"]
|
||||||
|
native-tls = ["reqwest?/native-tls"]
|
||||||
|
rustls-tls = ["reqwest?/rustls-tls"]
|
||||||
|
|
||||||
[[example]]
|
[[example]]
|
||||||
name = "openai"
|
name = "openai"
|
||||||
required-features = ["openai"]
|
required-features = ["openai"]
|
||||||
@@ -94,3 +109,7 @@ required-features = ["openai"]
|
|||||||
[[example]]
|
[[example]]
|
||||||
name = "sentence_transformers"
|
name = "sentence_transformers"
|
||||||
required-features = ["sentence-transformers"]
|
required-features = ["sentence-transformers"]
|
||||||
|
|
||||||
|
[[example]]
|
||||||
|
name = "bedrock"
|
||||||
|
required-features = ["bedrock"]
|
||||||
|
|||||||
89
rust/lancedb/examples/bedrock.rs
Normal file
89
rust/lancedb/examples/bedrock.rs
Normal file
@@ -0,0 +1,89 @@
|
|||||||
|
use std::{iter::once, sync::Arc};
|
||||||
|
|
||||||
|
use arrow_array::{Float64Array, Int32Array, RecordBatch, RecordBatchIterator, StringArray};
|
||||||
|
use arrow_schema::{DataType, Field, Schema};
|
||||||
|
use aws_config::Region;
|
||||||
|
use aws_sdk_bedrockruntime::Client;
|
||||||
|
use futures::StreamExt;
|
||||||
|
use lancedb::{
|
||||||
|
arrow::IntoArrow,
|
||||||
|
connect,
|
||||||
|
embeddings::{bedrock::BedrockEmbeddingFunction, EmbeddingDefinition, EmbeddingFunction},
|
||||||
|
query::{ExecutableQuery, QueryBase},
|
||||||
|
Result,
|
||||||
|
};
|
||||||
|
|
||||||
|
#[tokio::main]
|
||||||
|
async fn main() -> Result<()> {
|
||||||
|
let tempdir = tempfile::tempdir().unwrap();
|
||||||
|
let tempdir = tempdir.path().to_str().unwrap();
|
||||||
|
|
||||||
|
// create Bedrock embedding function
|
||||||
|
let region: String = "us-east-1".to_string();
|
||||||
|
let config = aws_config::defaults(aws_config::BehaviorVersion::latest())
|
||||||
|
.region(Region::new(region))
|
||||||
|
.load()
|
||||||
|
.await;
|
||||||
|
|
||||||
|
let embedding = Arc::new(BedrockEmbeddingFunction::new(
|
||||||
|
Client::new(&config), // AWS Region
|
||||||
|
));
|
||||||
|
|
||||||
|
let db = connect(tempdir).execute().await?;
|
||||||
|
db.embedding_registry()
|
||||||
|
.register("bedrock", embedding.clone())?;
|
||||||
|
|
||||||
|
let table = db
|
||||||
|
.create_table("vectors", make_data())
|
||||||
|
.add_embedding(EmbeddingDefinition::new(
|
||||||
|
"text",
|
||||||
|
"bedrock",
|
||||||
|
Some("embeddings"),
|
||||||
|
))?
|
||||||
|
.execute()
|
||||||
|
.await?;
|
||||||
|
|
||||||
|
// execute vector search
|
||||||
|
let query = Arc::new(StringArray::from_iter_values(once("something warm")));
|
||||||
|
let query_vector = embedding.compute_query_embeddings(query)?;
|
||||||
|
let mut results = table
|
||||||
|
.vector_search(query_vector)?
|
||||||
|
.limit(1)
|
||||||
|
.execute()
|
||||||
|
.await?;
|
||||||
|
|
||||||
|
let rb = results.next().await.unwrap()?;
|
||||||
|
let out = rb
|
||||||
|
.column_by_name("text")
|
||||||
|
.unwrap()
|
||||||
|
.as_any()
|
||||||
|
.downcast_ref::<StringArray>()
|
||||||
|
.unwrap();
|
||||||
|
let text = out.iter().next().unwrap().unwrap();
|
||||||
|
println!("Closest match: {}", text);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn make_data() -> impl IntoArrow {
|
||||||
|
let schema = Schema::new(vec![
|
||||||
|
Field::new("id", DataType::Int32, true),
|
||||||
|
Field::new("text", DataType::Utf8, false),
|
||||||
|
Field::new("price", DataType::Float64, false),
|
||||||
|
]);
|
||||||
|
|
||||||
|
let id = Int32Array::from(vec![1, 2, 3, 4]);
|
||||||
|
let text = StringArray::from_iter_values(vec![
|
||||||
|
"Black T-Shirt",
|
||||||
|
"Leather Jacket",
|
||||||
|
"Winter Parka",
|
||||||
|
"Hooded Sweatshirt",
|
||||||
|
]);
|
||||||
|
let price = Float64Array::from(vec![10.0, 50.0, 100.0, 30.0]);
|
||||||
|
let schema = Arc::new(schema);
|
||||||
|
let rb = RecordBatch::try_new(
|
||||||
|
schema.clone(),
|
||||||
|
vec![Arc::new(id), Arc::new(text), Arc::new(price)],
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
Box::new(RecordBatchIterator::new(vec![Ok(rb)], schema))
|
||||||
|
}
|
||||||
@@ -17,6 +17,9 @@ pub mod openai;
|
|||||||
#[cfg(feature = "sentence-transformers")]
|
#[cfg(feature = "sentence-transformers")]
|
||||||
pub mod sentence_transformers;
|
pub mod sentence_transformers;
|
||||||
|
|
||||||
|
#[cfg(feature = "bedrock")]
|
||||||
|
pub mod bedrock;
|
||||||
|
|
||||||
use lance::arrow::RecordBatchExt;
|
use lance::arrow::RecordBatchExt;
|
||||||
use std::{
|
use std::{
|
||||||
borrow::Cow,
|
borrow::Cow,
|
||||||
|
|||||||
210
rust/lancedb/src/embeddings/bedrock.rs
Normal file
210
rust/lancedb/src/embeddings/bedrock.rs
Normal file
@@ -0,0 +1,210 @@
|
|||||||
|
use aws_sdk_bedrockruntime::Client as BedrockClient;
|
||||||
|
use std::{borrow::Cow, fmt::Formatter, str::FromStr, sync::Arc};
|
||||||
|
|
||||||
|
use arrow::array::{AsArray, Float32Builder};
|
||||||
|
use arrow_array::{Array, ArrayRef, FixedSizeListArray, Float32Array};
|
||||||
|
use arrow_data::ArrayData;
|
||||||
|
use arrow_schema::DataType;
|
||||||
|
use serde_json::{json, Value};
|
||||||
|
|
||||||
|
use super::EmbeddingFunction;
|
||||||
|
use crate::{Error, Result};
|
||||||
|
|
||||||
|
use tokio::runtime::Handle;
|
||||||
|
use tokio::task::block_in_place;
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub enum BedrockEmbeddingModel {
|
||||||
|
TitanEmbedding,
|
||||||
|
CohereLarge,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl BedrockEmbeddingModel {
|
||||||
|
fn ndims(&self) -> usize {
|
||||||
|
match self {
|
||||||
|
Self::TitanEmbedding => 1536,
|
||||||
|
Self::CohereLarge => 1024,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn model_id(&self) -> &str {
|
||||||
|
match self {
|
||||||
|
Self::TitanEmbedding => "amazon.titan-embed-text-v1",
|
||||||
|
Self::CohereLarge => "cohere.embed-english-v3",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl FromStr for BedrockEmbeddingModel {
|
||||||
|
type Err = Error;
|
||||||
|
|
||||||
|
fn from_str(s: &str) -> std::result::Result<Self, Self::Err> {
|
||||||
|
match s {
|
||||||
|
"titan-embed-text-v1" => Ok(Self::TitanEmbedding),
|
||||||
|
"cohere-embed-english-v3" => Ok(Self::CohereLarge),
|
||||||
|
_ => Err(Error::InvalidInput {
|
||||||
|
message: "Invalid model. Available models are: 'titan-embed-text-v1', 'cohere-embed-english-v3'".to_string()
|
||||||
|
}),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub struct BedrockEmbeddingFunction {
|
||||||
|
model: BedrockEmbeddingModel,
|
||||||
|
client: BedrockClient,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl BedrockEmbeddingFunction {
|
||||||
|
pub fn new(client: BedrockClient) -> Self {
|
||||||
|
Self {
|
||||||
|
model: BedrockEmbeddingModel::TitanEmbedding,
|
||||||
|
client,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn with_model(client: BedrockClient, model: BedrockEmbeddingModel) -> Self {
|
||||||
|
Self { model, client }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl EmbeddingFunction for BedrockEmbeddingFunction {
|
||||||
|
fn name(&self) -> &str {
|
||||||
|
"bedrock"
|
||||||
|
}
|
||||||
|
|
||||||
|
fn source_type(&self) -> Result<Cow<DataType>> {
|
||||||
|
Ok(Cow::Owned(DataType::Utf8))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn dest_type(&self) -> Result<Cow<DataType>> {
|
||||||
|
let n_dims = self.model.ndims();
|
||||||
|
Ok(Cow::Owned(DataType::new_fixed_size_list(
|
||||||
|
DataType::Float32,
|
||||||
|
n_dims as i32,
|
||||||
|
false,
|
||||||
|
)))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn compute_source_embeddings(&self, source: ArrayRef) -> Result<ArrayRef> {
|
||||||
|
let len = source.len();
|
||||||
|
let n_dims = self.model.ndims();
|
||||||
|
let inner = self.compute_inner(source)?;
|
||||||
|
|
||||||
|
let fsl = DataType::new_fixed_size_list(DataType::Float32, n_dims as i32, false);
|
||||||
|
|
||||||
|
let array_data = ArrayData::builder(fsl)
|
||||||
|
.len(len)
|
||||||
|
.add_child_data(inner.into_data())
|
||||||
|
.build()?;
|
||||||
|
|
||||||
|
Ok(Arc::new(FixedSizeListArray::from(array_data)))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn compute_query_embeddings(&self, input: Arc<dyn Array>) -> Result<Arc<dyn Array>> {
|
||||||
|
let arr = self.compute_inner(input)?;
|
||||||
|
Ok(Arc::new(arr))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl std::fmt::Debug for BedrockEmbeddingFunction {
|
||||||
|
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
|
||||||
|
f.debug_struct("BedrockEmbeddingFunction")
|
||||||
|
.field("model", &self.model)
|
||||||
|
// Skip client field as it doesn't implement Debug
|
||||||
|
.finish()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl BedrockEmbeddingFunction {
|
||||||
|
fn compute_inner(&self, source: Arc<dyn Array>) -> Result<Float32Array> {
|
||||||
|
if source.is_nullable() {
|
||||||
|
return Err(Error::InvalidInput {
|
||||||
|
message: "Expected non-nullable data type".to_string(),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
if !matches!(source.data_type(), DataType::Utf8 | DataType::LargeUtf8) {
|
||||||
|
return Err(Error::InvalidInput {
|
||||||
|
message: "Expected Utf8 data type".to_string(),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut builder = Float32Builder::new();
|
||||||
|
|
||||||
|
let texts = match source.data_type() {
|
||||||
|
DataType::Utf8 => source
|
||||||
|
.as_string::<i32>()
|
||||||
|
.into_iter()
|
||||||
|
.map(|s| s.expect("array is non-nullable").to_string())
|
||||||
|
.collect::<Vec<String>>(),
|
||||||
|
DataType::LargeUtf8 => source
|
||||||
|
.as_string::<i64>()
|
||||||
|
.into_iter()
|
||||||
|
.map(|s| s.expect("array is non-nullable").to_string())
|
||||||
|
.collect::<Vec<String>>(),
|
||||||
|
_ => unreachable!(),
|
||||||
|
};
|
||||||
|
|
||||||
|
for text in texts {
|
||||||
|
let request_body = match self.model {
|
||||||
|
BedrockEmbeddingModel::TitanEmbedding => {
|
||||||
|
json!({
|
||||||
|
"inputText": text
|
||||||
|
})
|
||||||
|
}
|
||||||
|
BedrockEmbeddingModel::CohereLarge => {
|
||||||
|
json!({
|
||||||
|
"texts": [text],
|
||||||
|
"input_type": "search_document"
|
||||||
|
})
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
let client = self.client.clone();
|
||||||
|
let model_id = self.model.model_id().to_string();
|
||||||
|
let request_body = request_body.clone();
|
||||||
|
|
||||||
|
let response = block_in_place(move || {
|
||||||
|
Handle::current().block_on(async move {
|
||||||
|
client
|
||||||
|
.invoke_model()
|
||||||
|
.model_id(model_id)
|
||||||
|
.body(aws_sdk_bedrockruntime::primitives::Blob::new(
|
||||||
|
serde_json::to_vec(&request_body).unwrap(),
|
||||||
|
))
|
||||||
|
.send()
|
||||||
|
.await
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let response_json: Value =
|
||||||
|
serde_json::from_slice(response.body.as_ref()).map_err(|e| Error::Runtime {
|
||||||
|
message: format!("Failed to parse response: {}", e),
|
||||||
|
})?;
|
||||||
|
|
||||||
|
let embedding = match self.model {
|
||||||
|
BedrockEmbeddingModel::TitanEmbedding => response_json["embedding"]
|
||||||
|
.as_array()
|
||||||
|
.ok_or_else(|| Error::Runtime {
|
||||||
|
message: "Missing embedding in response".to_string(),
|
||||||
|
})?
|
||||||
|
.iter()
|
||||||
|
.map(|v| v.as_f64().unwrap() as f32)
|
||||||
|
.collect::<Vec<f32>>(),
|
||||||
|
BedrockEmbeddingModel::CohereLarge => response_json["embeddings"][0]
|
||||||
|
.as_array()
|
||||||
|
.ok_or_else(|| Error::Runtime {
|
||||||
|
message: "Missing embeddings in response".to_string(),
|
||||||
|
})?
|
||||||
|
.iter()
|
||||||
|
.map(|v| v.as_f64().unwrap() as f32)
|
||||||
|
.collect::<Vec<f32>>(),
|
||||||
|
};
|
||||||
|
|
||||||
|
builder.append_slice(&embedding);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(builder.finish())
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -704,6 +704,9 @@ pub struct VectorQuery {
|
|||||||
// IVF PQ - ANN search.
|
// IVF PQ - ANN search.
|
||||||
pub(crate) query_vector: Vec<Arc<dyn Array>>,
|
pub(crate) query_vector: Vec<Arc<dyn Array>>,
|
||||||
pub(crate) nprobes: usize,
|
pub(crate) nprobes: usize,
|
||||||
|
// The number of candidates to return during the refine step for HNSW,
|
||||||
|
// defaults to 1.5 * limit.
|
||||||
|
pub(crate) ef: Option<usize>,
|
||||||
pub(crate) refine_factor: Option<u32>,
|
pub(crate) refine_factor: Option<u32>,
|
||||||
pub(crate) distance_type: Option<DistanceType>,
|
pub(crate) distance_type: Option<DistanceType>,
|
||||||
/// Default is true. Set to false to enforce a brute force search.
|
/// Default is true. Set to false to enforce a brute force search.
|
||||||
@@ -717,6 +720,7 @@ impl VectorQuery {
|
|||||||
column: None,
|
column: None,
|
||||||
query_vector: Vec::new(),
|
query_vector: Vec::new(),
|
||||||
nprobes: 20,
|
nprobes: 20,
|
||||||
|
ef: None,
|
||||||
refine_factor: None,
|
refine_factor: None,
|
||||||
distance_type: None,
|
distance_type: None,
|
||||||
use_index: true,
|
use_index: true,
|
||||||
@@ -776,6 +780,18 @@ impl VectorQuery {
|
|||||||
self
|
self
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Set the number of candidates to return during the refine step for HNSW
|
||||||
|
///
|
||||||
|
/// This argument is only used when the vector column has an HNSW index.
|
||||||
|
/// If there is no index then this value is ignored.
|
||||||
|
///
|
||||||
|
/// Increasing this value will increase the recall of your query but will
|
||||||
|
/// also increase the latency of your query. The default value is 1.5*limit.
|
||||||
|
pub fn ef(mut self, ef: usize) -> Self {
|
||||||
|
self.ef = Some(ef);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
/// A multiplier to control how many additional rows are taken during the refine step
|
/// A multiplier to control how many additional rows are taken during the refine step
|
||||||
///
|
///
|
||||||
/// This argument is only used when the vector column has an IVF PQ index.
|
/// This argument is only used when the vector column has an IVF PQ index.
|
||||||
|
|||||||
@@ -19,9 +19,10 @@ use http::header::CONTENT_TYPE;
|
|||||||
use http::StatusCode;
|
use http::StatusCode;
|
||||||
use lance::arrow::json::JsonSchema;
|
use lance::arrow::json::JsonSchema;
|
||||||
use lance::dataset::scanner::DatasetRecordBatchStream;
|
use lance::dataset::scanner::DatasetRecordBatchStream;
|
||||||
use lance::dataset::{ColumnAlteration, NewColumnTransform};
|
use lance::dataset::{ColumnAlteration, NewColumnTransform, Version};
|
||||||
use lance_datafusion::exec::OneShotExec;
|
use lance_datafusion::exec::OneShotExec;
|
||||||
use serde::{Deserialize, Serialize};
|
use serde::{Deserialize, Serialize};
|
||||||
|
use tokio::sync::RwLock;
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
connection::NoData,
|
connection::NoData,
|
||||||
@@ -43,17 +44,32 @@ pub struct RemoteTable<S: HttpSend = Sender> {
|
|||||||
#[allow(dead_code)]
|
#[allow(dead_code)]
|
||||||
client: RestfulLanceDbClient<S>,
|
client: RestfulLanceDbClient<S>,
|
||||||
name: String,
|
name: String,
|
||||||
|
|
||||||
|
version: RwLock<Option<u64>>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<S: HttpSend> RemoteTable<S> {
|
impl<S: HttpSend> RemoteTable<S> {
|
||||||
pub fn new(client: RestfulLanceDbClient<S>, name: String) -> Self {
|
pub fn new(client: RestfulLanceDbClient<S>, name: String) -> Self {
|
||||||
Self { client, name }
|
Self {
|
||||||
|
client,
|
||||||
|
name,
|
||||||
|
version: RwLock::new(None),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
async fn describe(&self) -> Result<TableDescription> {
|
async fn describe(&self) -> Result<TableDescription> {
|
||||||
let request = self
|
let version = self.current_version().await;
|
||||||
|
self.describe_version(version).await
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn describe_version(&self, version: Option<u64>) -> Result<TableDescription> {
|
||||||
|
let mut request = self
|
||||||
.client
|
.client
|
||||||
.post(&format!("/v1/table/{}/describe/", self.name));
|
.post(&format!("/v1/table/{}/describe/", self.name));
|
||||||
|
|
||||||
|
let body = serde_json::json!({ "version": version });
|
||||||
|
request = request.json(&body);
|
||||||
|
|
||||||
let (request_id, response) = self.client.send(request, true).await?;
|
let (request_id, response) = self.client.send(request, true).await?;
|
||||||
|
|
||||||
let response = self.check_table_response(&request_id, response).await?;
|
let response = self.check_table_response(&request_id, response).await?;
|
||||||
@@ -196,6 +212,7 @@ impl<S: HttpSend> RemoteTable<S> {
|
|||||||
body["prefilter"] = query.base.prefilter.into();
|
body["prefilter"] = query.base.prefilter.into();
|
||||||
body["distance_type"] = serde_json::json!(query.distance_type.unwrap_or_default());
|
body["distance_type"] = serde_json::json!(query.distance_type.unwrap_or_default());
|
||||||
body["nprobes"] = query.nprobes.into();
|
body["nprobes"] = query.nprobes.into();
|
||||||
|
body["ef"] = query.ef.into();
|
||||||
body["refine_factor"] = query.refine_factor.into();
|
body["refine_factor"] = query.refine_factor.into();
|
||||||
if let Some(vector_column) = query.column.as_ref() {
|
if let Some(vector_column) = query.column.as_ref() {
|
||||||
body["vector_column"] = serde_json::Value::String(vector_column.clone());
|
body["vector_column"] = serde_json::Value::String(vector_column.clone());
|
||||||
@@ -250,6 +267,24 @@ impl<S: HttpSend> RemoteTable<S> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async fn check_mutable(&self) -> Result<()> {
|
||||||
|
let read_guard = self.version.read().await;
|
||||||
|
match *read_guard {
|
||||||
|
None => Ok(()),
|
||||||
|
Some(version) => Err(Error::NotSupported {
|
||||||
|
message: format!(
|
||||||
|
"Cannot mutate table reference fixed at version {}. Call checkout_latest() to get a mutable table reference.",
|
||||||
|
version
|
||||||
|
)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn current_version(&self) -> Option<u64> {
|
||||||
|
let read_guard = self.version.read().await;
|
||||||
|
*read_guard
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Deserialize)]
|
#[derive(Deserialize)]
|
||||||
@@ -277,7 +312,11 @@ mod test_utils {
|
|||||||
T: Into<reqwest::Body>,
|
T: Into<reqwest::Body>,
|
||||||
{
|
{
|
||||||
let client = client_with_handler(handler);
|
let client = client_with_handler(handler);
|
||||||
Self { client, name }
|
Self {
|
||||||
|
client,
|
||||||
|
name,
|
||||||
|
version: RwLock::new(None),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -296,21 +335,62 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
async fn version(&self) -> Result<u64> {
|
async fn version(&self) -> Result<u64> {
|
||||||
self.describe().await.map(|desc| desc.version)
|
self.describe().await.map(|desc| desc.version)
|
||||||
}
|
}
|
||||||
async fn checkout(&self, _version: u64) -> Result<()> {
|
async fn checkout(&self, version: u64) -> Result<()> {
|
||||||
Err(Error::NotSupported {
|
// check that the version exists
|
||||||
message: "checkout is not supported on LanceDB cloud.".into(),
|
self.describe_version(Some(version))
|
||||||
})
|
.await
|
||||||
|
.map_err(|e| match e {
|
||||||
|
// try to map the error to a more user-friendly error telling them
|
||||||
|
// specifically that the version does not exist
|
||||||
|
Error::TableNotFound { name } => Error::TableNotFound {
|
||||||
|
name: format!("{} (version: {})", name, version),
|
||||||
|
},
|
||||||
|
e => e,
|
||||||
|
})?;
|
||||||
|
|
||||||
|
let mut write_guard = self.version.write().await;
|
||||||
|
*write_guard = Some(version);
|
||||||
|
Ok(())
|
||||||
}
|
}
|
||||||
async fn checkout_latest(&self) -> Result<()> {
|
async fn checkout_latest(&self) -> Result<()> {
|
||||||
Err(Error::NotSupported {
|
let mut write_guard = self.version.write().await;
|
||||||
message: "checkout is not supported on LanceDB cloud.".into(),
|
*write_guard = None;
|
||||||
})
|
Ok(())
|
||||||
}
|
}
|
||||||
async fn restore(&self) -> Result<()> {
|
async fn restore(&self) -> Result<()> {
|
||||||
|
self.check_mutable().await?;
|
||||||
Err(Error::NotSupported {
|
Err(Error::NotSupported {
|
||||||
message: "restore is not supported on LanceDB cloud.".into(),
|
message: "restore is not supported on LanceDB cloud.".into(),
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async fn list_versions(&self) -> Result<Vec<Version>> {
|
||||||
|
let request = self
|
||||||
|
.client
|
||||||
|
.post(&format!("/v1/table/{}/version/list/", self.name));
|
||||||
|
let (request_id, response) = self.client.send(request, true).await?;
|
||||||
|
let response = self.check_table_response(&request_id, response).await?;
|
||||||
|
|
||||||
|
#[derive(Deserialize)]
|
||||||
|
struct ListVersionsResponse {
|
||||||
|
versions: Vec<Version>,
|
||||||
|
}
|
||||||
|
|
||||||
|
let body = response.text().await.err_to_http(request_id.clone())?;
|
||||||
|
let body: ListVersionsResponse =
|
||||||
|
serde_json::from_str(&body).map_err(|err| Error::Http {
|
||||||
|
source: format!(
|
||||||
|
"Failed to parse list_versions response: {}, body: {}",
|
||||||
|
err, body
|
||||||
|
)
|
||||||
|
.into(),
|
||||||
|
request_id,
|
||||||
|
status_code: None,
|
||||||
|
})?;
|
||||||
|
|
||||||
|
Ok(body.versions)
|
||||||
|
}
|
||||||
|
|
||||||
async fn schema(&self) -> Result<SchemaRef> {
|
async fn schema(&self) -> Result<SchemaRef> {
|
||||||
let schema = self.describe().await?.schema;
|
let schema = self.describe().await?.schema;
|
||||||
Ok(Arc::new(schema.try_into()?))
|
Ok(Arc::new(schema.try_into()?))
|
||||||
@@ -320,10 +400,13 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
.client
|
.client
|
||||||
.post(&format!("/v1/table/{}/count_rows/", self.name));
|
.post(&format!("/v1/table/{}/count_rows/", self.name));
|
||||||
|
|
||||||
|
let version = self.current_version().await;
|
||||||
|
|
||||||
if let Some(filter) = filter {
|
if let Some(filter) = filter {
|
||||||
request = request.json(&serde_json::json!({ "predicate": filter }));
|
request = request.json(&serde_json::json!({ "predicate": filter, "version": version }));
|
||||||
} else {
|
} else {
|
||||||
request = request.json(&serde_json::json!({}));
|
let body = serde_json::json!({ "version": version });
|
||||||
|
request = request.json(&body);
|
||||||
}
|
}
|
||||||
|
|
||||||
let (request_id, response) = self.client.send(request, true).await?;
|
let (request_id, response) = self.client.send(request, true).await?;
|
||||||
@@ -343,6 +426,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
add: AddDataBuilder<NoData>,
|
add: AddDataBuilder<NoData>,
|
||||||
data: Box<dyn RecordBatchReader + Send>,
|
data: Box<dyn RecordBatchReader + Send>,
|
||||||
) -> Result<()> {
|
) -> Result<()> {
|
||||||
|
self.check_mutable().await?;
|
||||||
let body = Self::reader_as_body(data)?;
|
let body = Self::reader_as_body(data)?;
|
||||||
let mut request = self
|
let mut request = self
|
||||||
.client
|
.client
|
||||||
@@ -371,7 +455,8 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
) -> Result<Arc<dyn ExecutionPlan>> {
|
) -> Result<Arc<dyn ExecutionPlan>> {
|
||||||
let request = self.client.post(&format!("/v1/table/{}/query/", self.name));
|
let request = self.client.post(&format!("/v1/table/{}/query/", self.name));
|
||||||
|
|
||||||
let body = serde_json::Value::Object(Default::default());
|
let version = self.current_version().await;
|
||||||
|
let body = serde_json::json!({ "version": version });
|
||||||
let bodies = Self::apply_vector_query_params(body, query)?;
|
let bodies = Self::apply_vector_query_params(body, query)?;
|
||||||
|
|
||||||
let mut futures = Vec::with_capacity(bodies.len());
|
let mut futures = Vec::with_capacity(bodies.len());
|
||||||
@@ -406,7 +491,8 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
.post(&format!("/v1/table/{}/query/", self.name))
|
.post(&format!("/v1/table/{}/query/", self.name))
|
||||||
.header(CONTENT_TYPE, JSON_CONTENT_TYPE);
|
.header(CONTENT_TYPE, JSON_CONTENT_TYPE);
|
||||||
|
|
||||||
let mut body = serde_json::Value::Object(Default::default());
|
let version = self.current_version().await;
|
||||||
|
let mut body = serde_json::json!({ "version": version });
|
||||||
Self::apply_query_params(&mut body, query)?;
|
Self::apply_query_params(&mut body, query)?;
|
||||||
// Empty vector can be passed if no vector search is performed.
|
// Empty vector can be passed if no vector search is performed.
|
||||||
body["vector"] = serde_json::Value::Array(Vec::new());
|
body["vector"] = serde_json::Value::Array(Vec::new());
|
||||||
@@ -420,6 +506,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
Ok(DatasetRecordBatchStream::new(stream))
|
Ok(DatasetRecordBatchStream::new(stream))
|
||||||
}
|
}
|
||||||
async fn update(&self, update: UpdateBuilder) -> Result<u64> {
|
async fn update(&self, update: UpdateBuilder) -> Result<u64> {
|
||||||
|
self.check_mutable().await?;
|
||||||
let request = self
|
let request = self
|
||||||
.client
|
.client
|
||||||
.post(&format!("/v1/table/{}/update/", self.name));
|
.post(&format!("/v1/table/{}/update/", self.name));
|
||||||
@@ -441,6 +528,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
Ok(0) // TODO: support returning number of modified rows once supported in SaaS.
|
Ok(0) // TODO: support returning number of modified rows once supported in SaaS.
|
||||||
}
|
}
|
||||||
async fn delete(&self, predicate: &str) -> Result<()> {
|
async fn delete(&self, predicate: &str) -> Result<()> {
|
||||||
|
self.check_mutable().await?;
|
||||||
let body = serde_json::json!({ "predicate": predicate });
|
let body = serde_json::json!({ "predicate": predicate });
|
||||||
let request = self
|
let request = self
|
||||||
.client
|
.client
|
||||||
@@ -452,6 +540,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
async fn create_index(&self, mut index: IndexBuilder) -> Result<()> {
|
async fn create_index(&self, mut index: IndexBuilder) -> Result<()> {
|
||||||
|
self.check_mutable().await?;
|
||||||
let request = self
|
let request = self
|
||||||
.client
|
.client
|
||||||
.post(&format!("/v1/table/{}/create_index/", self.name));
|
.post(&format!("/v1/table/{}/create_index/", self.name));
|
||||||
@@ -530,6 +619,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
params: MergeInsertBuilder,
|
params: MergeInsertBuilder,
|
||||||
new_data: Box<dyn RecordBatchReader + Send>,
|
new_data: Box<dyn RecordBatchReader + Send>,
|
||||||
) -> Result<()> {
|
) -> Result<()> {
|
||||||
|
self.check_mutable().await?;
|
||||||
let query = MergeInsertRequest::try_from(params)?;
|
let query = MergeInsertRequest::try_from(params)?;
|
||||||
let body = Self::reader_as_body(new_data)?;
|
let body = Self::reader_as_body(new_data)?;
|
||||||
let request = self
|
let request = self
|
||||||
@@ -546,6 +636,7 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
Ok(())
|
Ok(())
|
||||||
}
|
}
|
||||||
async fn optimize(&self, _action: OptimizeAction) -> Result<OptimizeStats> {
|
async fn optimize(&self, _action: OptimizeAction) -> Result<OptimizeStats> {
|
||||||
|
self.check_mutable().await?;
|
||||||
Err(Error::NotSupported {
|
Err(Error::NotSupported {
|
||||||
message: "optimize is not supported on LanceDB cloud.".into(),
|
message: "optimize is not supported on LanceDB cloud.".into(),
|
||||||
})
|
})
|
||||||
@@ -555,16 +646,19 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
_transforms: NewColumnTransform,
|
_transforms: NewColumnTransform,
|
||||||
_read_columns: Option<Vec<String>>,
|
_read_columns: Option<Vec<String>>,
|
||||||
) -> Result<()> {
|
) -> Result<()> {
|
||||||
|
self.check_mutable().await?;
|
||||||
Err(Error::NotSupported {
|
Err(Error::NotSupported {
|
||||||
message: "add_columns is not yet supported.".into(),
|
message: "add_columns is not yet supported.".into(),
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
async fn alter_columns(&self, _alterations: &[ColumnAlteration]) -> Result<()> {
|
async fn alter_columns(&self, _alterations: &[ColumnAlteration]) -> Result<()> {
|
||||||
|
self.check_mutable().await?;
|
||||||
Err(Error::NotSupported {
|
Err(Error::NotSupported {
|
||||||
message: "alter_columns is not yet supported.".into(),
|
message: "alter_columns is not yet supported.".into(),
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
async fn drop_columns(&self, _columns: &[&str]) -> Result<()> {
|
async fn drop_columns(&self, _columns: &[&str]) -> Result<()> {
|
||||||
|
self.check_mutable().await?;
|
||||||
Err(Error::NotSupported {
|
Err(Error::NotSupported {
|
||||||
message: "drop_columns is not yet supported.".into(),
|
message: "drop_columns is not yet supported.".into(),
|
||||||
})
|
})
|
||||||
@@ -572,9 +666,13 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
|
|
||||||
async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
|
async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
|
||||||
// Make request to list the indices
|
// Make request to list the indices
|
||||||
let request = self
|
let mut request = self
|
||||||
.client
|
.client
|
||||||
.post(&format!("/v1/table/{}/index/list/", self.name));
|
.post(&format!("/v1/table/{}/index/list/", self.name));
|
||||||
|
let version = self.current_version().await;
|
||||||
|
let body = serde_json::json!({ "version": version });
|
||||||
|
request = request.json(&body);
|
||||||
|
|
||||||
let (request_id, response) = self.client.send(request, true).await?;
|
let (request_id, response) = self.client.send(request, true).await?;
|
||||||
let response = self.check_table_response(&request_id, response).await?;
|
let response = self.check_table_response(&request_id, response).await?;
|
||||||
|
|
||||||
@@ -624,10 +722,14 @@ impl<S: HttpSend> TableInternal for RemoteTable<S> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
async fn index_stats(&self, index_name: &str) -> Result<Option<IndexStatistics>> {
|
async fn index_stats(&self, index_name: &str) -> Result<Option<IndexStatistics>> {
|
||||||
let request = self.client.post(&format!(
|
let mut request = self.client.post(&format!(
|
||||||
"/v1/table/{}/index/{}/stats/",
|
"/v1/table/{}/index/{}/stats/",
|
||||||
self.name, index_name
|
self.name, index_name
|
||||||
));
|
));
|
||||||
|
let version = self.current_version().await;
|
||||||
|
let body = serde_json::json!({ "version": version });
|
||||||
|
request = request.json(&body);
|
||||||
|
|
||||||
let (request_id, response) = self.client.send(request, true).await?;
|
let (request_id, response) = self.client.send(request, true).await?;
|
||||||
|
|
||||||
if response.status() == StatusCode::NOT_FOUND {
|
if response.status() == StatusCode::NOT_FOUND {
|
||||||
@@ -701,6 +803,7 @@ mod tests {
|
|||||||
use arrow::{array::AsArray, compute::concat_batches, datatypes::Int32Type};
|
use arrow::{array::AsArray, compute::concat_batches, datatypes::Int32Type};
|
||||||
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator};
|
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator};
|
||||||
use arrow_schema::{DataType, Field, Schema};
|
use arrow_schema::{DataType, Field, Schema};
|
||||||
|
use chrono::{DateTime, Utc};
|
||||||
use futures::{future::BoxFuture, StreamExt, TryFutureExt};
|
use futures::{future::BoxFuture, StreamExt, TryFutureExt};
|
||||||
use lance_index::scalar::FullTextSearchQuery;
|
use lance_index::scalar::FullTextSearchQuery;
|
||||||
use reqwest::Body;
|
use reqwest::Body;
|
||||||
@@ -805,7 +908,10 @@ mod tests {
|
|||||||
request.headers().get("Content-Type").unwrap(),
|
request.headers().get("Content-Type").unwrap(),
|
||||||
JSON_CONTENT_TYPE
|
JSON_CONTENT_TYPE
|
||||||
);
|
);
|
||||||
assert_eq!(request.body().unwrap().as_bytes().unwrap(), br#"{}"#);
|
assert_eq!(
|
||||||
|
request.body().unwrap().as_bytes().unwrap(),
|
||||||
|
br#"{"version":null}"#
|
||||||
|
);
|
||||||
|
|
||||||
http::Response::builder().status(200).body("42").unwrap()
|
http::Response::builder().status(200).body("42").unwrap()
|
||||||
});
|
});
|
||||||
@@ -822,7 +928,7 @@ mod tests {
|
|||||||
);
|
);
|
||||||
assert_eq!(
|
assert_eq!(
|
||||||
request.body().unwrap().as_bytes().unwrap(),
|
request.body().unwrap().as_bytes().unwrap(),
|
||||||
br#"{"predicate":"a > 10"}"#
|
br#"{"predicate":"a > 10","version":null}"#
|
||||||
);
|
);
|
||||||
|
|
||||||
http::Response::builder().status(200).body("42").unwrap()
|
http::Response::builder().status(200).body("42").unwrap()
|
||||||
@@ -1121,7 +1227,9 @@ mod tests {
|
|||||||
"prefilter": true,
|
"prefilter": true,
|
||||||
"distance_type": "l2",
|
"distance_type": "l2",
|
||||||
"nprobes": 20,
|
"nprobes": 20,
|
||||||
|
"ef": Option::<usize>::None,
|
||||||
"refine_factor": null,
|
"refine_factor": null,
|
||||||
|
"version": null,
|
||||||
});
|
});
|
||||||
// Pass vector separately to make sure it matches f32 precision.
|
// Pass vector separately to make sure it matches f32 precision.
|
||||||
expected_body["vector"] = vec![0.1f32, 0.2, 0.3].into();
|
expected_body["vector"] = vec![0.1f32, 0.2, 0.3].into();
|
||||||
@@ -1166,7 +1274,9 @@ mod tests {
|
|||||||
"bypass_vector_index": true,
|
"bypass_vector_index": true,
|
||||||
"columns": ["a", "b"],
|
"columns": ["a", "b"],
|
||||||
"nprobes": 12,
|
"nprobes": 12,
|
||||||
|
"ef": Option::<usize>::None,
|
||||||
"refine_factor": 2,
|
"refine_factor": 2,
|
||||||
|
"version": null,
|
||||||
});
|
});
|
||||||
// Pass vector separately to make sure it matches f32 precision.
|
// Pass vector separately to make sure it matches f32 precision.
|
||||||
expected_body["vector"] = vec![0.1f32, 0.2, 0.3].into();
|
expected_body["vector"] = vec![0.1f32, 0.2, 0.3].into();
|
||||||
@@ -1222,6 +1332,7 @@ mod tests {
|
|||||||
"k": 10,
|
"k": 10,
|
||||||
"vector": [],
|
"vector": [],
|
||||||
"with_row_id": true,
|
"with_row_id": true,
|
||||||
|
"version": null
|
||||||
});
|
});
|
||||||
assert_eq!(body, expected_body);
|
assert_eq!(body, expected_body);
|
||||||
|
|
||||||
@@ -1407,6 +1518,51 @@ mod tests {
|
|||||||
assert_eq!(indices, expected);
|
assert_eq!(indices, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_list_versions() {
|
||||||
|
let table = Table::new_with_handler("my_table", |request| {
|
||||||
|
assert_eq!(request.method(), "POST");
|
||||||
|
assert_eq!(request.url().path(), "/v1/table/my_table/version/list/");
|
||||||
|
|
||||||
|
let version1 = lance::dataset::Version {
|
||||||
|
version: 1,
|
||||||
|
timestamp: "2024-01-01T00:00:00Z".parse().unwrap(),
|
||||||
|
metadata: Default::default(),
|
||||||
|
};
|
||||||
|
let version2 = lance::dataset::Version {
|
||||||
|
version: 2,
|
||||||
|
timestamp: "2024-02-01T00:00:00Z".parse().unwrap(),
|
||||||
|
metadata: Default::default(),
|
||||||
|
};
|
||||||
|
let response_body = serde_json::json!({
|
||||||
|
"versions": [
|
||||||
|
version1,
|
||||||
|
version2,
|
||||||
|
]
|
||||||
|
});
|
||||||
|
let response_body = serde_json::to_string(&response_body).unwrap();
|
||||||
|
|
||||||
|
http::Response::builder()
|
||||||
|
.status(200)
|
||||||
|
.body(response_body)
|
||||||
|
.unwrap()
|
||||||
|
});
|
||||||
|
|
||||||
|
let versions = table.list_versions().await.unwrap();
|
||||||
|
assert_eq!(versions.len(), 2);
|
||||||
|
assert_eq!(versions[0].version, 1);
|
||||||
|
assert_eq!(
|
||||||
|
versions[0].timestamp,
|
||||||
|
"2024-01-01T00:00:00Z".parse::<DateTime<Utc>>().unwrap()
|
||||||
|
);
|
||||||
|
assert_eq!(versions[1].version, 2);
|
||||||
|
assert_eq!(
|
||||||
|
versions[1].timestamp,
|
||||||
|
"2024-02-01T00:00:00Z".parse::<DateTime<Utc>>().unwrap()
|
||||||
|
);
|
||||||
|
// assert_eq!(versions, expected);
|
||||||
|
}
|
||||||
|
|
||||||
#[tokio::test]
|
#[tokio::test]
|
||||||
async fn test_index_stats() {
|
async fn test_index_stats() {
|
||||||
let table = Table::new_with_handler("my_table", |request| {
|
let table = Table::new_with_handler("my_table", |request| {
|
||||||
@@ -1451,4 +1607,195 @@ mod tests {
|
|||||||
let indices = table.index_stats("my_index").await.unwrap();
|
let indices = table.index_stats("my_index").await.unwrap();
|
||||||
assert!(indices.is_none());
|
assert!(indices.is_none());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_passes_version() {
|
||||||
|
let table = Table::new_with_handler("my_table", |request| {
|
||||||
|
let body = request.body().unwrap().as_bytes().unwrap();
|
||||||
|
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
|
||||||
|
let version = body
|
||||||
|
.as_object()
|
||||||
|
.unwrap()
|
||||||
|
.get("version")
|
||||||
|
.unwrap()
|
||||||
|
.as_u64()
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(version, 42);
|
||||||
|
|
||||||
|
let response_body = match request.url().path() {
|
||||||
|
"/v1/table/my_table/describe/" => {
|
||||||
|
serde_json::json!({
|
||||||
|
"version": 42,
|
||||||
|
"schema": { "fields": [] }
|
||||||
|
})
|
||||||
|
}
|
||||||
|
"/v1/table/my_table/index/list/" => {
|
||||||
|
serde_json::json!({
|
||||||
|
"indexes": []
|
||||||
|
})
|
||||||
|
}
|
||||||
|
"/v1/table/my_table/index/my_idx/stats/" => {
|
||||||
|
serde_json::json!({
|
||||||
|
"num_indexed_rows": 100000,
|
||||||
|
"num_unindexed_rows": 0,
|
||||||
|
"index_type": "IVF_PQ",
|
||||||
|
"distance_type": "l2"
|
||||||
|
})
|
||||||
|
}
|
||||||
|
"/v1/table/my_table/count_rows/" => {
|
||||||
|
serde_json::json!(1000)
|
||||||
|
}
|
||||||
|
"/v1/table/my_table/query/" => {
|
||||||
|
let expected_data = RecordBatch::try_new(
|
||||||
|
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
|
||||||
|
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
let expected_data_ref = expected_data.clone();
|
||||||
|
let response_body = write_ipc_file(&expected_data_ref);
|
||||||
|
return http::Response::builder()
|
||||||
|
.status(200)
|
||||||
|
.header(CONTENT_TYPE, ARROW_FILE_CONTENT_TYPE)
|
||||||
|
.body(response_body)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
path => panic!("Unexpected path: {}", path),
|
||||||
|
};
|
||||||
|
|
||||||
|
http::Response::builder()
|
||||||
|
.status(200)
|
||||||
|
.body(
|
||||||
|
serde_json::to_string(&response_body)
|
||||||
|
.unwrap()
|
||||||
|
.as_bytes()
|
||||||
|
.to_vec(),
|
||||||
|
)
|
||||||
|
.unwrap()
|
||||||
|
});
|
||||||
|
|
||||||
|
table.checkout(42).await.unwrap();
|
||||||
|
|
||||||
|
// ensure that version is passed to the /describe endpoint
|
||||||
|
let version = table.version().await.unwrap();
|
||||||
|
assert_eq!(version, 42);
|
||||||
|
|
||||||
|
// ensure it's passed to other read API calls
|
||||||
|
table.list_indices().await.unwrap();
|
||||||
|
table.index_stats("my_idx").await.unwrap();
|
||||||
|
table.count_rows(None).await.unwrap();
|
||||||
|
table
|
||||||
|
.query()
|
||||||
|
.nearest_to(vec![0.1, 0.2, 0.3])
|
||||||
|
.unwrap()
|
||||||
|
.execute()
|
||||||
|
.await
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_fails_if_checkout_version_doesnt_exist() {
|
||||||
|
let table = Table::new_with_handler("my_table", |request| {
|
||||||
|
let body = request.body().unwrap().as_bytes().unwrap();
|
||||||
|
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
|
||||||
|
let version = body
|
||||||
|
.as_object()
|
||||||
|
.unwrap()
|
||||||
|
.get("version")
|
||||||
|
.unwrap()
|
||||||
|
.as_u64()
|
||||||
|
.unwrap();
|
||||||
|
if version != 42 {
|
||||||
|
return http::Response::builder()
|
||||||
|
.status(404)
|
||||||
|
.body(format!("Table my_table (version: {}) not found", version))
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
let response_body = match request.url().path() {
|
||||||
|
"/v1/table/my_table/describe/" => {
|
||||||
|
serde_json::json!({
|
||||||
|
"version": 42,
|
||||||
|
"schema": { "fields": [] }
|
||||||
|
})
|
||||||
|
}
|
||||||
|
_ => panic!("Unexpected path"),
|
||||||
|
};
|
||||||
|
|
||||||
|
http::Response::builder()
|
||||||
|
.status(200)
|
||||||
|
.body(serde_json::to_string(&response_body).unwrap())
|
||||||
|
.unwrap()
|
||||||
|
});
|
||||||
|
|
||||||
|
let res = table.checkout(43).await;
|
||||||
|
println!("{:?}", res);
|
||||||
|
assert!(
|
||||||
|
matches!(res, Err(Error::TableNotFound { name }) if name == "my_table (version: 43)")
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[tokio::test]
|
||||||
|
async fn test_timetravel_immutable() {
|
||||||
|
let table = Table::new_with_handler::<String>("my_table", |request| {
|
||||||
|
let response_body = match request.url().path() {
|
||||||
|
"/v1/table/my_table/describe/" => {
|
||||||
|
serde_json::json!({
|
||||||
|
"version": 42,
|
||||||
|
"schema": { "fields": [] }
|
||||||
|
})
|
||||||
|
}
|
||||||
|
_ => panic!("Should not have made a request: {:?}", request),
|
||||||
|
};
|
||||||
|
|
||||||
|
http::Response::builder()
|
||||||
|
.status(200)
|
||||||
|
.body(serde_json::to_string(&response_body).unwrap())
|
||||||
|
.unwrap()
|
||||||
|
});
|
||||||
|
|
||||||
|
table.checkout(42).await.unwrap();
|
||||||
|
|
||||||
|
// Ensure that all mutable operations fail.
|
||||||
|
let res = table
|
||||||
|
.update()
|
||||||
|
.column("a", "a + 1")
|
||||||
|
.column("b", "b - 1")
|
||||||
|
.only_if("b > 10")
|
||||||
|
.execute()
|
||||||
|
.await;
|
||||||
|
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||||
|
|
||||||
|
let batch = RecordBatch::try_new(
|
||||||
|
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
|
||||||
|
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
let data = Box::new(RecordBatchIterator::new(
|
||||||
|
[Ok(batch.clone())],
|
||||||
|
batch.schema(),
|
||||||
|
));
|
||||||
|
let res = table.merge_insert(&["some_col"]).execute(data).await;
|
||||||
|
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||||
|
|
||||||
|
let res = table.delete("id in (1, 2, 3)").await;
|
||||||
|
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||||
|
|
||||||
|
let data = RecordBatch::try_new(
|
||||||
|
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
|
||||||
|
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
let res = table
|
||||||
|
.add(RecordBatchIterator::new([Ok(data.clone())], data.schema()))
|
||||||
|
.execute()
|
||||||
|
.await;
|
||||||
|
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||||
|
|
||||||
|
let res = table
|
||||||
|
.create_index(&["a"], Index::IvfPq(Default::default()))
|
||||||
|
.execute()
|
||||||
|
.await;
|
||||||
|
assert!(matches!(res, Err(Error::NotSupported { .. })));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -37,7 +37,7 @@ pub use lance::dataset::ColumnAlteration;
|
|||||||
pub use lance::dataset::NewColumnTransform;
|
pub use lance::dataset::NewColumnTransform;
|
||||||
pub use lance::dataset::ReadParams;
|
pub use lance::dataset::ReadParams;
|
||||||
use lance::dataset::{
|
use lance::dataset::{
|
||||||
Dataset, UpdateBuilder as LanceUpdateBuilder, WhenMatched, WriteMode, WriteParams,
|
Dataset, UpdateBuilder as LanceUpdateBuilder, Version, WhenMatched, WriteMode, WriteParams,
|
||||||
};
|
};
|
||||||
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
|
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
|
||||||
use lance::io::WrappingObjectStore;
|
use lance::io::WrappingObjectStore;
|
||||||
@@ -426,6 +426,7 @@ pub(crate) trait TableInternal: std::fmt::Display + std::fmt::Debug + Send + Syn
|
|||||||
async fn checkout(&self, version: u64) -> Result<()>;
|
async fn checkout(&self, version: u64) -> Result<()>;
|
||||||
async fn checkout_latest(&self) -> Result<()>;
|
async fn checkout_latest(&self) -> Result<()>;
|
||||||
async fn restore(&self) -> Result<()>;
|
async fn restore(&self) -> Result<()>;
|
||||||
|
async fn list_versions(&self) -> Result<Vec<Version>>;
|
||||||
async fn table_definition(&self) -> Result<TableDefinition>;
|
async fn table_definition(&self) -> Result<TableDefinition>;
|
||||||
fn dataset_uri(&self) -> &str;
|
fn dataset_uri(&self) -> &str;
|
||||||
}
|
}
|
||||||
@@ -955,6 +956,11 @@ impl Table {
|
|||||||
self.inner.restore().await
|
self.inner.restore().await
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// List all the versions of the table
|
||||||
|
pub async fn list_versions(&self) -> Result<Vec<Version>> {
|
||||||
|
self.inner.list_versions().await
|
||||||
|
}
|
||||||
|
|
||||||
/// List all indices that have been created with [`Self::create_index`]
|
/// List all indices that have been created with [`Self::create_index`]
|
||||||
pub async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
|
pub async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
|
||||||
self.inner.list_indices().await
|
self.inner.list_indices().await
|
||||||
@@ -1319,7 +1325,7 @@ impl NativeTable {
|
|||||||
let (indices, mf) = futures::try_join!(dataset.load_indices(), dataset.latest_manifest())?;
|
let (indices, mf) = futures::try_join!(dataset.load_indices(), dataset.latest_manifest())?;
|
||||||
Ok(indices
|
Ok(indices
|
||||||
.iter()
|
.iter()
|
||||||
.map(|i| VectorIndex::new_from_format(&mf, i))
|
.map(|i| VectorIndex::new_from_format(&(mf.0), i))
|
||||||
.collect())
|
.collect())
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -1707,6 +1713,10 @@ impl TableInternal for NativeTable {
|
|||||||
self.dataset.reload().await
|
self.dataset.reload().await
|
||||||
}
|
}
|
||||||
|
|
||||||
|
async fn list_versions(&self) -> Result<Vec<Version>> {
|
||||||
|
Ok(self.dataset.get().await?.versions().await?)
|
||||||
|
}
|
||||||
|
|
||||||
async fn restore(&self) -> Result<()> {
|
async fn restore(&self) -> Result<()> {
|
||||||
let version =
|
let version =
|
||||||
self.dataset
|
self.dataset
|
||||||
@@ -1904,6 +1914,9 @@ impl TableInternal for NativeTable {
|
|||||||
query.base.offset.map(|offset| offset as i64),
|
query.base.offset.map(|offset| offset as i64),
|
||||||
)?;
|
)?;
|
||||||
scanner.nprobs(query.nprobes);
|
scanner.nprobs(query.nprobes);
|
||||||
|
if let Some(ef) = query.ef {
|
||||||
|
scanner.ef(ef);
|
||||||
|
}
|
||||||
scanner.use_index(query.use_index);
|
scanner.use_index(query.use_index);
|
||||||
scanner.prefilter(query.base.prefilter);
|
scanner.prefilter(query.base.prefilter);
|
||||||
match query.base.select {
|
match query.base.select {
|
||||||
|
|||||||
Reference in New Issue
Block a user