Compare commits

...

36 Commits

Author SHA1 Message Date
Lance Release
8f6e955b24 Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:54 +00:00
Lance Release
1096da09da [python] Bump version: 0.3.0 → 0.3.1 2023-10-13 21:23:47 +00:00
Ayush Chaurasia
683824f1e9 Add cohere embedding function (#550) 2023-10-13 16:27:34 +05:30
Will Jones
db7bdefe77 feat: cleanup and compaction (#518)
#488
2023-10-11 12:49:12 -07:00
Ayush Chaurasia
e41894b071 [Docs] Improve visibility of table ops (#553)
A little verbose, but better than being non-discoverable 
![Screenshot from 2023-10-11
16-26-02](https://github.com/lancedb/lancedb/assets/15766192/9ba539a7-0cf8-4d9e-94e7-ce5d37c35df0)
2023-10-11 12:20:46 -07:00
Chang She
e1ae2bcbd8 feat: add to_list and to_pandas api's (#556)
Add `to_list` to return query results as list of python dict (so we're
not too pandas-centric). Closes #555

Add `to_pandas` API and add deprecation warning on `to_df`. Closes #545

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-11 12:18:55 -07:00
Ankur Goyal
ababc3f8ec Use query.limit(..) in README (#543)
If you run the README javascript example in typescript, it complains
that the type of limit is a function and cannot be set to a number.
2023-10-11 11:54:14 -07:00
Ayush Chaurasia
a1377afcaa feat: telemetry, error tracking, CLI & config manager (#538)
Co-authored-by: Lance Release <lance-dev@lancedb.com>
Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: rmeng <rob@lancedb.com>
Co-authored-by: Chang She <chang@lancedb.com>
Co-authored-by: Rok Mihevc <rok@mihevc.org>
2023-10-08 23:11:39 +05:30
Lei Xu
a26c8f3316 feat: use GPU for index creation. (#540)
Bump lance to 0.8.3 to include GPU training

---------

Co-authored-by: Rob Meng <rob.xu.meng@gmail.com>
2023-10-05 20:49:00 -07:00
Josh Wein
88d8d7249e Typo cleanup (#539) 2023-10-05 23:07:28 -04:00
Rob Meng
0eb7c9ea0c fix stackoverflow (#542)
closes #541 

two functions was calling itself instead of routing to primary
2023-10-05 20:05:04 -04:00
Rob Meng
1db66c6980 implement mirroring object store (#537)
This PR implements a mirroring object store and allows and table to be
mirrored to a local path when param `mirroredStore` is set in the url
2023-10-04 21:23:34 -04:00
Lance Release
c58da8fc8a Updating package-lock.json 2023-10-03 22:59:02 +00:00
Lance Release
448c4a835d Updating package-lock.json 2023-10-03 22:09:00 +00:00
Lance Release
850f80de99 Bump version: 0.2.6 → 0.3.0 2023-10-03 22:08:44 +00:00
Lance Release
a022368426 [python] Bump version: 0.2.6 → 0.3.0 2023-10-03 21:48:22 +00:00
Lei Xu
8b815ef5a8 chore: upgrade lance to 0.8.1 (#536)
Bump to lance 0.8.1 for both javascript and python sdk
2023-10-03 14:29:18 -07:00
Tan Li
e4c3a9346c [doc] make the tensor width differnt from height (#533) 2023-10-03 00:55:16 -07:00
Prashanth Rao
1d1f8964d2 [DOCS][PYTHON] Update docs for clarity (#531)
I only modified those docs pages that are untouched in existing unmerged
PRs, so hopefully there are no merge conflicts!

1. The `tantivy-py` version specified in the docs doesn't work (pip
install fails), but with the latest version of pip and wheel installed
on my Mac, I was able to just `pip install tantivy` and FTS works great
for me. I updated the docs page to include this in
7ca4b757ce but can always modify to
another specific version in case this breaks any tests.
2. The `.add()` method for Python should take in a list of dicts as the
first option (to also align with the JS API), and additionally, users
can pass an existing pandas DataFrame to add to a table. Hope this makes
sense.
3. I've had multiple conversations with users who are unclear that the
terms "exhaustive", "flat" and "KNN" are all the same kind of search, so
I've updated the verbiage of this section to clarify this.
4. Fixed typos and improved clarity in the ANN indexes page.
2023-10-03 09:46:53 +05:30
Lance Release
d326146a40 [python] Bump version: 0.2.5 → 0.2.6 2023-10-01 17:48:59 +00:00
Chang She
693bca1eba feat(python): expose prefilter to lancedb (#522)
We have experimental support for prefiltering (without ANN) in pylance.
This means that we can now apply a filter BEFORE vector search is
performed. This can be done via the `.where(filter_string,
prefilter=True)` kwargs of the query.

Limitations:
- When connecting to LanceDB cloud, `prefilter=True` will raise
NotImplemented
- When an ANN index is present, `prefilter=True` will raise
NotImplemented
- This option is not available for full text search query
- This option is not available for empty search query (just
filter/project)

Additional changes in this PR:
- Bump pylance version to v0.8.0 which supports the experimental
prefiltering.

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-10-01 10:34:12 -07:00
Will Jones
343e274ea5 fix: define minimum dependency versions (#515)
Closes #513

For each of these, I found the minimum version that would allow the unit
tests to pass.
2023-09-29 09:04:49 -07:00
Rob Meng
a695fb8030 fix import attr to use import attrs (#510)
Thanks to #508, I used `attr` instead of the correct package `attrs`

s/attr/attrs
2023-09-23 00:30:56 -04:00
Hynek Schlawack
bc8670d7af [Python] Fix attrs dependency (#508)
The `attr` project is unrelated to `attrs` that also provides the `attr`
namespace (see also <https://hynek.me/articles/import-attrs/>).

It used to _usually_ work, because attrs is a dependency of aiohttp and
somehow took precedence over `attr`'s `attr`.

Yes, sorry, it's a mess.
2023-09-21 12:35:34 -04:00
Lance Release
74004161ff [python] Bump version: 0.2.4 → 0.2.5 2023-09-19 16:43:06 +00:00
Lance Release
34ddb1de6d Updating package-lock.json 2023-09-19 13:48:20 +00:00
Lance Release
1029fc9cb0 Updating package-lock.json 2023-09-19 12:19:23 +00:00
Lance Release
31c5df6d99 Bump version: 0.2.5 → 0.2.6 2023-09-19 12:19:05 +00:00
Rob Meng
dbf37a0434 fix: upgrade lance to 0.7.5 and add tests for searching empty dataset (#505)
This PR upgrade lance to `0.7.5`, which include fixes for searching an
empty dataset.

This PR also adds two tests in node SDK to make sure searching empty
dataset do no throw

Co-authored-by: rmeng <rob@lancedb.com>
2023-09-18 22:12:11 -07:00
Chang She
f20f19b804 feat: improve pydantic 1.x compat (#503) 2023-09-18 19:01:30 -07:00
Chang She
55207ce844 feat: add lancedb.__version__ (#504) 2023-09-18 18:51:51 -07:00
Chang She
c21f9cdda0 ci: fix docs build (#496)
python/python.md contains typos in the class references

---------

Co-authored-by: Chang She <chang@lancedb.com>
2023-09-18 13:07:21 -07:00
Rob Meng
bc38abb781 refactor connection string processing (#500)
in #486 `connect` started converting path into uri. However, the PR
didn't handle relative path and appended `file://` to relative path.

This PR changes the parsing strat to be more rational. If a path is
provided instead of url, we do not try anythinng special.

engine and engine params may only be specified when a url with schema is
provided

Co-authored-by: rmeng <rob@lancedb.com>
2023-09-18 12:38:00 -07:00
Rob Meng
731f86e44c add health check to wait for all service ready before next step (#501)
aws integration tests are flaky because we didn't wait for the services
to become healthy. (we only waited for the localstack service, this PR
adds wait for sub services)
2023-09-18 15:17:45 -04:00
Chang She
31dad71c94 multi-modal embedding-function (#484) 2023-09-16 21:23:51 -04:00
Will Jones
9585f550b3 fix: increase S3 timeouts (#494)
Closes #493
2023-09-15 20:21:34 -07:00
77 changed files with 3582 additions and 531 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.2.5 current_version = 0.3.1
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -9,6 +9,7 @@ on:
- node/** - node/**
- rust/ffi/node/** - rust/ffi/node/**
- .github/workflows/node.yml - .github/workflows/node.yml
- docker-compose.yml
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
@@ -133,7 +134,7 @@ jobs:
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- name: start local stack - name: start local stack
run: docker compose -f ../docker-compose.yml up -d run: docker compose -f ../docker-compose.yml up -d --wait
- name: create s3 - name: create s3
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
- name: create ddb - name: create ddb

View File

@@ -38,7 +38,7 @@ jobs:
- name: isort - name: isort
run: isort --check --diff --quiet . run: isort --check --diff --quiet .
- name: Run tests - name: Run tests
run: pytest -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest - name: doctest
run: pytest --doctest-modules lancedb run: pytest --doctest-modules lancedb
mac: mac:
@@ -65,4 +65,34 @@ jobs:
- name: Black - name: Black
run: black --check --diff --no-color --quiet . run: black --check --diff --no-color --quiet .
- name: Run tests - name: Run tests
run: pytest -x -v --durations=30 tests run: pytest -m "not slow" -x -v --durations=30 tests
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.9
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
run: black --check --diff --no-color --quiet .
- name: isort
run: isort --check --diff --quiet .
- name: Run tests
run: pytest -m "not slow" -x -v --durations=30 tests
- name: doctest
run: pytest --doctest-modules lancedb

View File

@@ -5,8 +5,9 @@ exclude = ["python"]
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.7.4", "features" = ["dynamodb"] } lance = { "version" = "=0.8.3", "features" = ["dynamodb"] }
lance-linalg = { "version" = "=0.7.4" } lance-linalg = { "version" = "=0.8.3" }
lance-testing = { "version" = "=0.8.3" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "43.0.0", optional = false } arrow = { version = "43.0.0", optional = false }
arrow-array = "43.0" arrow-array = "43.0"
@@ -16,6 +17,7 @@ arrow-ord = "43.0"
arrow-schema = "43.0" arrow-schema = "43.0"
arrow-arith = "43.0" arrow-arith = "43.0"
arrow-cast = "43.0" arrow-cast = "43.0"
chrono = "0.4.23"
half = { "version" = "=2.2.1", default-features = false, features = [ half = { "version" = "=2.2.1", default-features = false, features = [
"num-traits" "num-traits"
] } ] }

View File

@@ -33,6 +33,8 @@ The key features of LanceDB include:
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. * Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way. * Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads. LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
@@ -52,8 +54,7 @@ const table = await db.createTable('vectors',
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 }, [{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }]) { id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }])
const query = table.search([0.1, 0.3]); const query = table.search([0.1, 0.3]).limit(2);
query.limit = 20;
const results = await query.execute(); const results = await query.execute();
``` ```
@@ -70,7 +71,7 @@ db = lancedb.connect(uri)
table = db.create_table("my_table", table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df() result = table.search([100, 100]).limit(2).to_pandas()
``` ```
## Blogs, Tutorials & Videos ## Blogs, Tutorials & Videos

View File

@@ -13,3 +13,6 @@ services:
- AWS_SECRET_ACCESS_KEY=SECRETKEY - AWS_SECRET_ACCESS_KEY=SECRETKEY
healthcheck: healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ] test: [ "CMD", "curl", "-f", "http://localhost:4566/health" ]
interval: 5s
retries: 3
start_period: 10s

View File

@@ -21,6 +21,7 @@ theme:
- navigation.tracking - navigation.tracking
- navigation.instant - navigation.instant
- navigation.indexes - navigation.indexes
- navigation.expand
icon: icon:
repo: fontawesome/brands/github repo: fontawesome/brands/github
custom_dir: overrides custom_dir: overrides
@@ -68,7 +69,7 @@ nav:
- 🏢 Home: index.md - 🏢 Home: index.md
- 💡 Basics: basic.md - 💡 Basics: basic.md
- 📚 Guides: - 📚 Guides:
- Tables: guides/tables.md - Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md - Vector Search: search.md
- SQL filters: sql.md - SQL filters: sql.md
- Indexing: ann_indexes.md - Indexing: ann_indexes.md
@@ -96,9 +97,11 @@ nav:
- Serverless Website Chatbot: examples/serverless_website_chatbot.md - Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- ⚙️ CLI & Config: cli_config.md
- Basics: basic.md - Basics: basic.md
- Guides: - Guides:
- Tables: guides/tables.md - Create Ingest Update Delete: guides/tables.md
- Vector Search: search.md - Vector Search: search.md
- SQL filters: sql.md - SQL filters: sql.md
- Indexing: ann_indexes.md - Indexing: ann_indexes.md

View File

@@ -6,7 +6,7 @@ LanceDB provides many parameters to fine-tune the index's size, the speed of que
Currently, LanceDB does *not* automatically create the ANN index. Currently, LanceDB does *not* automatically create the ANN index.
LanceDB has optimized code for KNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all. LanceDB has optimized code for KNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall. If you can live with < 100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
In the future we will look to automatically create and configure the ANN index. In the future we will look to automatically create and configure the ANN index.
@@ -68,6 +68,12 @@ a single PQ code.
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption> <figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure> </figure>
### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index.
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `"cuda"`` to enable GPU training.
## Querying an ANN Index ## Querying an ANN Index
@@ -91,7 +97,7 @@ There are a couple of parameters that can be used to fine-tune the search:
.limit(2) \ .limit(2) \
.nprobes(20) \ .nprobes(20) \
.refine_factor(10) \ .refine_factor(10) \
.to_df() .to_pandas()
``` ```
``` ```
vector item _distance vector item _distance
@@ -118,7 +124,7 @@ You can further filter the elements returned by a search using a where clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_df() tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
``` ```
=== "Javascript" === "Javascript"
@@ -135,7 +141,7 @@ You can select the columns returned by the query using a select clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).select(["vector"]).to_df() tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
``` ```
``` ```
vector _distance vector _distance
@@ -154,28 +160,28 @@ You can select the columns returned by the query using a select clause.
## FAQ ## FAQ
### When is it necessary to create an ANN vector index. ### When is it necessary to create an ANN vector index?
`LanceDB` has manually tuned SIMD code for computing vector distances. `LanceDB` has manually-tuned SIMD code for computing vector distances.
In our benchmarks, computing 100K pairs of 1K dimension vectors only take less than 20ms. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
For small dataset (<100K rows) or the applications which can accept 100ms latency, vector indices are usually not necessary. For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
For large-scale or higher dimension vectors, it is beneficial to create vector index. For large-scale or higher dimension vectors, it is beneficial to create vector index.
### How big is my index, and how many memory will it take. ### How big is my index, and how many memory will it take?
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code. In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers. For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index. ### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
`num_partitions` is used to decide how many partitions the first level `IVF` index uses. `num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall. On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` decides how many Product Quantization code to generate on each vector. Because `num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
Product Quantization is a lossy compression of the original vector, the more `num_sub_vectors` usually results to PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yield better accuracy. However, similarly, more `num_sub_vectors` causes heavier I/O and less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, thus, higher latency. `dimension / num_sub_vectors` should be aligned with 8 for better SIMD efficiency. more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.

View File

@@ -123,9 +123,15 @@ After a table has been created, you can always add more data to it using
=== "Python" === "Python"
```python ```python
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]) # Option 1: Add a list of dicts to a table
tbl.add(df) data = [{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}]
tbl.add(data)
# Option 2: Add a pandas DataFrame to a table
df = pd.DataFrame(data)
tbl.add(data)
``` ```
=== "Javascript" === "Javascript"
@@ -140,7 +146,7 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
=== "Python" === "Python"
```python ```python
tbl.search([100, 100]).limit(2).to_df() tbl.search([100, 100]).limit(2).to_pandas()
``` ```
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.

37
docs/src/cli_config.md Normal file
View File

@@ -0,0 +1,37 @@
## LanceDB CLI
Once lanceDB is installed, you can access the CLI using `lancedb` command on the console
```
lancedb
```
This lists out all the various command-line options available. You can get the usage or help for a particular command
```
lancedb {command} --help
```
## LanceDB config
LanceDB uses a global config file to store certain settings. These settings are configurable using the lanceDB cli.
To view your config settings, you can use:
```
lancedb config
```
These config parameters can be tuned using the cli.
```
lancedb {config_name} --{argument}
```
## LanceDB Opt-in Diagnostics
When enabled, LanceDB will send anonymous events to help us improve LanceDB. These diagnostics are used only for error reporting and no data is collected. Error & stats allow us to automate certain aspects of bug reporting, prioritization of fixes and feature requests.
These diagnostics are opt-in and can be enabled or disabled using the `lancedb diagnostics` command. These are enabled by default.
Get usage help.
```
lancedb diagnostics --help
```
Disable diagnostics
```
lancedb diagnostics --disabled
```
Enable diagnostics
```
lancedb diagnostics --enabled
```

View File

@@ -118,7 +118,7 @@ belong in the same latent space and your results will be nonsensical.
```python ```python
query = "What's the best pizza topping?" query = "What's the best pizza topping?"
query_vector = embed_func([query])[0] query_vector = embed_func([query])[0]
tbl.search(query_vector).limit(10).to_df() tbl.search(query_vector).limit(10).to_pandas()
``` ```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query. The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -80,14 +80,14 @@ def handler(event, context):
# Shape of SIFT is (128,1M), d=float32 # Shape of SIFT is (128,1M), d=float32
query_vector = np.array(event['query_vector'], dtype=np.float32) query_vector = np.array(event['query_vector'], dtype=np.float32)
rs = table.search(query_vector).limit(2).to_df() rs = table.search(query_vector).limit(2).to_list()
return { return {
"statusCode": status_code, "statusCode": status_code,
"headers": { "headers": {
"Content-Type": "application/json" "Content-Type": "application/json"
}, },
"body": rs.to_json() "body": json.dumps(rs)
} }
``` ```

View File

@@ -6,17 +6,19 @@ to make this available for JS as well.
## Installation ## Installation
To use full text search, you must install optional dependency tantivy-py: To use full text search, you must install the dependency `tantivy-py`:
# tantivy 0.19.2 # tantivy 0.20.1
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 ```sh
pip install tantivy==0.20.1
```
## Quickstart ## Quickstart
Assume: Assume:
1. `table` is a LanceDB Table 1. `table` is a LanceDB Table
2. `text` is the name of the Table column that we want to index 2. `text` is the name of the `Table` column that we want to index
For example, For example,
@@ -41,7 +43,13 @@ table.create_fts_index("text")
To search: To search:
```python ```python
df = table.search("puppy").limit(10).select(["text"]).to_df() table.search("puppy").limit(10).select(["text"]).to_list()
```
Which returns a list of dictionaries:
```python
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
``` ```
LanceDB automatically looks for an FTS index if the input is str. LanceDB automatically looks for an FTS index if the input is str.

View File

@@ -42,7 +42,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
import pandas as pd import pandas as pd
data = pd.DataFrame({ data = pd.DataFrame({
"vector": [[1.1, 1.2], [0.2, 1.8]], "vector": [[1.1, 1.2, 1.3, 1.4], [0.2, 1.8, 0.4, 3.6]],
"lat": [45.5, 40.1], "lat": [45.5, 40.1],
"long": [-122.7, -74.1] "long": [-122.7, -74.1]
}) })
@@ -56,7 +56,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```python ```python
custom_schema = pa.schema([ custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("lat", pa.float32()), pa.field("lat", pa.float32()),
pa.field("long", pa.float32()) pa.field("long", pa.float32())
]) ])
@@ -70,8 +70,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
```python ```python
table = pa.Table.from_arrays( table = pa.Table.from_arrays(
[ [
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 2)), pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]), pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]), pa.array([10.0, 20.0]),
], ],
@@ -84,7 +84,17 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
``` ```
### From Pydantic Models ### From Pydantic Models
LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel via pydantic_to_schema() method. When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a pyarrow schema or a specialized
pydantic model called `LanceModel`.
For example, the following Content model specifies a table with 5 columns:
movie_id, vector, genres, title, and imdb_id. When you create a table, you can
pass the class as the value of the `schema` parameter to `create_table`.
The `vector` column is a `Vector` type, which is a specialized pydantic type that
can be configured with the vector dimensions. It is also important to note that
LanceDB only understands subclasses of `lancedb.pydantic.LanceModel`
(which itself derives from `pydantic.BaseModel`).
```python ```python
from lancedb.pydantic import Vector, LanceModel from lancedb.pydantic import Vector, LanceModel
@@ -121,8 +131,8 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
for i in range(5): for i in range(5):
yield pa.RecordBatch.from_arrays( yield pa.RecordBatch.from_arrays(
[ [
pa.array([[3.1, 4.1], [5.9, 26.5]], pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]],
pa.list_(pa.float32(), 2)), pa.list_(pa.float32(), 4)),
pa.array(["foo", "bar"]), pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]), pa.array([10.0, 20.0]),
], ],
@@ -130,7 +140,7 @@ A Table is a collection of Records in a LanceDB Database. You can follow along o
) )
schema = pa.schema([ schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 2)), pa.field("vector", pa.list_(pa.float32(), 4)),
pa.field("item", pa.utf8()), pa.field("item", pa.utf8()),
pa.field("price", pa.float32()), pa.field("price", pa.float32()),
]) ])
@@ -354,6 +364,48 @@ Use the `delete()` method on tables to delete rows from a table. To choose which
await tbl.countRows() // Returns 1 await tbl.countRows() // Returns 1
``` ```
### Updating a Table [Experimental]
EXPERIMENTAL: Update rows in the table (not threadsafe).
This can be used to update zero to all rows depending on how many rows match the where clause.
| Parameter | Type | Description |
|---|---|---|
| `where` | `str` | The SQL where clause to use when updating rows. For example, `'x = 2'` or `'x IN (1, 2, 3)'`. The filter must not be empty, or it will error. |
| `values` | `dict` | The values to update. The keys are the column names and the values are the values to set. |
=== "Python"
```python
import lancedb
import pandas as pd
# Create a lancedb connection
db = lancedb.connect("./.lancedb")
# Create a table from a pandas DataFrame
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
table = db.create_table("my_table", data)
# Update the table where x = 2
table.update(where="x = 2", values={"vector": [10, 10]})
# Get the updated table as a pandas DataFrame
df = table.to_pandas()
# Print the DataFrame
print(df)
```
Output
```shell
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
```
## What's Next? ## What's Next?
Learn how to Query your tables and create indices Learn how to Query your tables and create indices

View File

@@ -36,7 +36,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
table = db.create_table("my_table", table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_df() result = table.search([100, 100]).limit(2).to_list()
``` ```
=== "Javascript" === "Javascript"

View File

@@ -144,7 +144,7 @@
"source": [ "source": [
"# Pre-processing and loading the documentation\n", "# Pre-processing and loading the documentation\n",
"\n", "\n",
"Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time yyou do it). We'll also add some more metadata to the docs here such as the title and version of the code:" "Next, let's pre-process and load the documentation. To make sure we don't need to do this repeatedly if we were updating code, we're caching it using pickle so we can retrieve it again (this could take a few minutes to run the first time you do it). We'll also add some more metadata to the docs here such as the title and version of the code:"
] ]
}, },
{ {
@@ -255,7 +255,7 @@
"id": "28d93b85", "id": "28d93b85",
"metadata": {}, "metadata": {},
"source": [ "source": [
"And thats it! We're all setup. The next step is to run some queries, let's try a few:" "And that's it! We're all set up. The next step is to run some queries, let's try a few:"
] ]
}, },
{ {

View File

@@ -19,11 +19,11 @@
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"\n", "\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\n", "\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.2\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip available: \u001B[0m\u001B[31;49m22.3.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.2\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
] ]
} }
], ],
@@ -39,6 +39,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import io\n", "import io\n",
"\n",
"import PIL\n", "import PIL\n",
"import duckdb\n", "import duckdb\n",
"import lancedb" "import lancedb"
@@ -158,18 +159,18 @@
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n", " \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"embedding = embed_func('{query}')\\n\"\n", " f\"embedding = embed_func('{query}')\\n\"\n",
" \"tbl.search(embedding).limit(9).to_df()\"\n", " \"tbl.search(embedding).limit(9).to_pandas()\"\n",
" )\n", " )\n",
" return (_extract(tbl.search(emb).limit(9).to_df()), code)\n", " return (_extract(tbl.search(emb).limit(9).to_pandas()), code)\n",
"\n", "\n",
"def find_image_keywords(query):\n", "def find_image_keywords(query):\n",
" code = (\n", " code = (\n",
" \"import lancedb\\n\"\n", " \"import lancedb\\n\"\n",
" \"db = lancedb.connect('~/datasets/demo')\\n\"\n", " \"db = lancedb.connect('~/datasets/demo')\\n\"\n",
" \"tbl = db.open_table('diffusiondb')\\n\\n\"\n", " \"tbl = db.open_table('diffusiondb')\\n\\n\"\n",
" f\"tbl.search('{query}').limit(9).to_df()\"\n", " f\"tbl.search('{query}').limit(9).to_pandas()\"\n",
" )\n", " )\n",
" return (_extract(tbl.search(query).limit(9).to_df()), code)\n", " return (_extract(tbl.search(query).limit(9).to_pandas()), code)\n",
"\n", "\n",
"def find_image_sql(query):\n", "def find_image_sql(query):\n",
" code = (\n", " code = (\n",

View File

@@ -27,11 +27,11 @@
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"\n", "\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n",
"\n", "\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n", "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m23.1.1\u001B[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" "\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\n"
] ]
} }
], ],
@@ -184,7 +184,7 @@
"df = (contextualize(data.to_pandas())\n", "df = (contextualize(data.to_pandas())\n",
" .groupby(\"title\").text_col(\"text\")\n", " .groupby(\"title\").text_col(\"text\")\n",
" .window(20).stride(4)\n", " .window(20).stride(4)\n",
" .to_df())\n", " .to_pandas())\n",
"df.head(1)" "df.head(1)"
] ]
}, },
@@ -603,7 +603,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"# Use LanceDB to get top 3 most relevant context\n", "# Use LanceDB to get top 3 most relevant context\n",
"context = tbl.search(emb).limit(3).to_df()" "context = tbl.search(emb).limit(3).to_pandas()"
] ]
}, },
{ {

View File

@@ -74,7 +74,7 @@ table = db.open_table("pd_table")
query_vector = [100, 100] query_vector = [100, 100]
# Pandas DataFrame # Pandas DataFrame
df = table.search(query_vector).limit(1).to_df() df = table.search(query_vector).limit(1).to_pandas()
print(df) print(df)
``` ```
@@ -89,12 +89,12 @@ If you have more complex criteria, you can always apply the filter to the result
```python ```python
# Apply the filter via LanceDB # Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df() results = table.search([100, 100]).where("price < 15").to_pandas()
assert len(results) == 1 assert len(results) == 1
assert results["item"].iloc[0] == "foo" assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas # Apply the filter via Pandas
df = results = table.search([100, 100]).to_df() df = results = table.search([100, 100]).to_pandas()
results = df[df.price < 15] results = df[df.price < 15]
assert len(results) == 1 assert len(results) == 1
assert results["item"].iloc[0] == "foo" assert results["item"].iloc[0] == "foo"

View File

@@ -26,15 +26,19 @@ pip install lancedb
## Embeddings ## Embeddings
::: lancedb.embeddings.with_embeddings
::: lancedb.embeddings.functions.EmbeddingFunctionRegistry ::: lancedb.embeddings.functions.EmbeddingFunctionRegistry
::: lancedb.embeddings.functions.EmbeddingFunctionModel ::: lancedb.embeddings.functions.EmbeddingFunction
::: lancedb.embeddings.functions.TextEmbeddingFunctionModel ::: lancedb.embeddings.functions.TextEmbeddingFunction
::: lancedb.embeddings.functions.SentenceTransformerEmbeddingFunction ::: lancedb.embeddings.functions.SentenceTransformerEmbeddings
::: lancedb.embeddings.functions.OpenAIEmbeddings
::: lancedb.embeddings.functions.OpenClipEmbeddings
::: lancedb.embeddings.with_embeddings
## Context ## Context

View File

@@ -25,8 +25,8 @@ Currently, we support the following metrics:
### Flat Search ### Flat Search
If LanceDB does not create a vector index, LanceDB would need to scan (`Flat Search`) the entire vector column If you do not create a vector index, LanceDB would need to exhaustively scan the entire vector column (via `Flat Search`)
and compute the distance for each vector in order to find the closest matches. and compute the distance for *every* vector in order to find the closest matches. This is effectively a KNN search.
<!-- Setup Code <!-- Setup Code
@@ -67,7 +67,7 @@ await db_setup.createTable('my_vectors', data)
df = tbl.search(np.random.random((1536))) \ df = tbl.search(np.random.random((1536))) \
.limit(10) \ .limit(10) \
.to_df() .to_list()
``` ```
=== "JavaScript" === "JavaScript"
@@ -92,7 +92,7 @@ as well.
df = tbl.search(np.random.random((1536))) \ df = tbl.search(np.random.random((1536))) \
.metric("cosine") \ .metric("cosine") \
.limit(10) \ .limit(10) \
.to_df() .to_list()
``` ```
@@ -110,7 +110,7 @@ as well.
To accelerate vector retrievals, it is common to build vector indices. To accelerate vector retrievals, it is common to build vector indices.
A vector index is a data structure specifically designed to efficiently organize and A vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity or distance metrics. search vector data based on their similarity via the chosen distance metric.
By constructing a vector index, you can reduce the search space and avoid the need By constructing a vector index, you can reduce the search space and avoid the need
for brute-force scanning of the entire vector column. for brute-force scanning of the entire vector column.

View File

@@ -1,5 +1,8 @@
lancedb @ git+https://github.com/lancedb/lancedb.git#egg=subdir&subdirectory=python -e ../../python
numpy numpy
pandas pandas
pylance pylance
duckdb duckdb
--extra-index-url https://download.pytorch.org/whl/cpu
torch

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.2.5", "version": "0.3.0",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.2.5", "version": "0.3.0",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.5", "@lancedb/vectordb-darwin-arm64": "0.3.0",
"@lancedb/vectordb-darwin-x64": "0.2.5", "@lancedb/vectordb-darwin-x64": "0.3.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.5", "@lancedb/vectordb-linux-arm64-gnu": "0.3.0",
"@lancedb/vectordb-linux-x64-gnu": "0.2.5", "@lancedb/vectordb-linux-x64-gnu": "0.3.0",
"@lancedb/vectordb-win32-x64-msvc": "0.2.5" "@lancedb/vectordb-win32-x64-msvc": "0.3.0"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -317,9 +317,9 @@
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": { "node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.0.tgz",
"integrity": "sha512-V4206SajkMN3o+bBFBAYJq5emlrjevitP0g8RFfVlmj/LS38i8k4uvSe1bICQ2amUrYkL/Jw4ktYn19NRfTU+g==", "integrity": "sha512-Fg+k/cSnqmNQlSWyDp0PpaAJ67kAISfZAD+zZ3mcE8/3ml2I/wM/GVjPy2zeiQX9aR93lG1mZXFSNTDUc74tWQ==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -329,9 +329,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-darwin-x64": { "node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.0.tgz",
"integrity": "sha512-orePizgXCbTJbDJ4bMMnYh/4OgmWDBbHShNxHKQobcX+NgWTexmR0lV1WNOG+DtczBiGH422e3gHJ+xhTO13vg==", "integrity": "sha512-CXp4b/brMbnBPZuGzKIOskd9uD90R73rWubaJ0du/Kt6fcyQX1dM1wEhWTLxI6eKf8IDL/R9QLL2cIahm1J86w==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -341,9 +341,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-arm64-gnu": { "node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.0.tgz",
"integrity": "sha512-xIMNwsFGOHeY9EUWCHhUAcA2sCHZ5Lim0sc42uuUOeWayyH+HeR6ZWReptDQRuAoJHqQeag9qcqteE0AZPDTEw==", "integrity": "sha512-1bjaRzYcDsWIRUbO2K/f+ohNmNvCgKcrrOhmiXSHVlYY8kH1LUMFZj+BhqBC0Ea0Stt7/1rsRLMRXRtaeVOEHw==",
"cpu": [ "cpu": [
"arm64" "arm64"
], ],
@@ -353,9 +353,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-linux-x64-gnu": { "node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.0.tgz",
"integrity": "sha512-Qr8dbHavtE+Zfd45kEORJQe01kRWhMF703gk8zhtZhskDUBCfqm3ap22JIux58tASxVcBqY8EtUFojfYGnQVvA==", "integrity": "sha512-BEDIJ6ReGAi+tLTS/RzxIw621yo1UUUiVNTzPGV2didyiJCr1chIGbES+39d/wiFQM43Xs3CBZLNzp+jKkv0/w==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -365,9 +365,9 @@
] ]
}, },
"node_modules/@lancedb/vectordb-win32-x64-msvc": { "node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.0.tgz",
"integrity": "sha512-jTqkR9HRfbjxhUrlTfveNkJ78tlpVXeNn3BS4wBm4VIsPd75jminKBRYtrlQCWyHusqrUQedKny4hhG1CuNUkg==", "integrity": "sha512-7K2kbWbShuifQF/6L/tWSz2DhKfIreHKlBdVOuBTYYOReQMHn5cJxgwuFgQHqMubZ9zcagtHpmo+Wtqd034OKQ==",
"cpu": [ "cpu": [
"x64" "x64"
], ],
@@ -4869,33 +4869,33 @@
} }
}, },
"@lancedb/vectordb-darwin-arm64": { "@lancedb/vectordb-darwin-arm64": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.3.0.tgz",
"integrity": "sha512-V4206SajkMN3o+bBFBAYJq5emlrjevitP0g8RFfVlmj/LS38i8k4uvSe1bICQ2amUrYkL/Jw4ktYn19NRfTU+g==", "integrity": "sha512-Fg+k/cSnqmNQlSWyDp0PpaAJ67kAISfZAD+zZ3mcE8/3ml2I/wM/GVjPy2zeiQX9aR93lG1mZXFSNTDUc74tWQ==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-darwin-x64": { "@lancedb/vectordb-darwin-x64": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.3.0.tgz",
"integrity": "sha512-orePizgXCbTJbDJ4bMMnYh/4OgmWDBbHShNxHKQobcX+NgWTexmR0lV1WNOG+DtczBiGH422e3gHJ+xhTO13vg==", "integrity": "sha512-CXp4b/brMbnBPZuGzKIOskd9uD90R73rWubaJ0du/Kt6fcyQX1dM1wEhWTLxI6eKf8IDL/R9QLL2cIahm1J86w==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-arm64-gnu": { "@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.3.0.tgz",
"integrity": "sha512-xIMNwsFGOHeY9EUWCHhUAcA2sCHZ5Lim0sc42uuUOeWayyH+HeR6ZWReptDQRuAoJHqQeag9qcqteE0AZPDTEw==", "integrity": "sha512-1bjaRzYcDsWIRUbO2K/f+ohNmNvCgKcrrOhmiXSHVlYY8kH1LUMFZj+BhqBC0Ea0Stt7/1rsRLMRXRtaeVOEHw==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-linux-x64-gnu": { "@lancedb/vectordb-linux-x64-gnu": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.3.0.tgz",
"integrity": "sha512-Qr8dbHavtE+Zfd45kEORJQe01kRWhMF703gk8zhtZhskDUBCfqm3ap22JIux58tASxVcBqY8EtUFojfYGnQVvA==", "integrity": "sha512-BEDIJ6ReGAi+tLTS/RzxIw621yo1UUUiVNTzPGV2didyiJCr1chIGbES+39d/wiFQM43Xs3CBZLNzp+jKkv0/w==",
"optional": true "optional": true
}, },
"@lancedb/vectordb-win32-x64-msvc": { "@lancedb/vectordb-win32-x64-msvc": {
"version": "0.2.5", "version": "0.3.0",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.2.5.tgz", "resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.3.0.tgz",
"integrity": "sha512-jTqkR9HRfbjxhUrlTfveNkJ78tlpVXeNn3BS4wBm4VIsPd75jminKBRYtrlQCWyHusqrUQedKny4hhG1CuNUkg==", "integrity": "sha512-7K2kbWbShuifQF/6L/tWSz2DhKfIreHKlBdVOuBTYYOReQMHn5cJxgwuFgQHqMubZ9zcagtHpmo+Wtqd034OKQ==",
"optional": true "optional": true
}, },
"@neon-rs/cli": { "@neon-rs/cli": {

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.2.5", "version": "0.3.1",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -81,10 +81,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.2.5", "@lancedb/vectordb-darwin-arm64": "0.3.1",
"@lancedb/vectordb-darwin-x64": "0.2.5", "@lancedb/vectordb-darwin-x64": "0.3.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.2.5", "@lancedb/vectordb-linux-arm64-gnu": "0.3.1",
"@lancedb/vectordb-linux-x64-gnu": "0.2.5", "@lancedb/vectordb-linux-x64-gnu": "0.3.1",
"@lancedb/vectordb-win32-x64-msvc": "0.2.5" "@lancedb/vectordb-win32-x64-msvc": "0.3.1"
} }
} }

View File

@@ -23,7 +23,7 @@ import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function' import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete, tableCleanupOldVersions, tableCompactFiles } = require('../native.js')
export { Query } export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
@@ -459,6 +459,111 @@ export class LocalTable<T = number[]> implements Table<T> {
async delete (filter: string): Promise<void> { async delete (filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable }) return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
} }
/**
* Clean up old versions of the table, freeing disk space.
*
* @param olderThan The minimum age in minutes of the versions to delete. If not
* provided, defaults to two weeks.
* @param deleteUnverified Because they may be part of an in-progress
* transaction, uncommitted files newer than 7 days old are
* not deleted by default. This means that failed transactions
* can leave around data that takes up disk space for up to
* 7 days. You can override this safety mechanism by setting
* this option to `true`, only if you promise there are no
* in progress writes while you run this operation. Failure to
* uphold this promise can lead to corrupted tables.
* @returns
*/
async cleanupOldVersions (olderThan?: number, deleteUnverified?: boolean): Promise<CleanupStats> {
return tableCleanupOldVersions.call(this._tbl, olderThan, deleteUnverified)
.then((res: { newTable: any, metrics: CleanupStats }) => {
this._tbl = res.newTable
return res.metrics
})
}
/**
* Run the compaction process on the table.
*
* This can be run after making several small appends to optimize the table
* for faster reads.
*
* @param options Advanced options configuring compaction. In most cases, you
* can omit this arguments, as the default options are sensible
* for most tables.
* @returns Metrics about the compaction operation.
*/
async compactFiles (options?: CompactionOptions): Promise<CompactionMetrics> {
const optionsArg = options ?? {}
return tableCompactFiles.call(this._tbl, optionsArg)
.then((res: { newTable: any, metrics: CompactionMetrics }) => {
this._tbl = res.newTable
return res.metrics
})
}
}
export interface CleanupStats {
/**
* The number of bytes removed from disk.
*/
bytesRemoved: number
/**
* The number of old table versions removed.
*/
oldVersions: number
}
export interface CompactionOptions {
/**
* The number of rows per fragment to target. Fragments that have fewer rows
* will be compacted into adjacent fragments to produce larger fragments.
* Defaults to 1024 * 1024.
*/
targetRowsPerFragment?: number
/**
* The maximum number of rows per group. Defaults to 1024.
*/
maxRowsPerGroup?: number
/**
* If true, fragments that have rows that are deleted may be compacted to
* remove the deleted rows. This can improve the performance of queries.
* Default is true.
*/
materializeDeletions?: boolean
/**
* A number between 0 and 1, representing the proportion of rows that must be
* marked deleted before a fragment is a candidate for compaction to remove
* the deleted rows. Default is 10%.
*/
materializeDeletionsThreshold?: number
/**
* The number of threads to use for compaction. If not provided, defaults to
* the number of cores on the machine.
*/
numThreads?: number
}
export interface CompactionMetrics {
/**
* The number of fragments that were removed.
*/
fragmentsRemoved: number
/**
* The number of new fragments that were created.
*/
fragmentsAdded: number
/**
* The number of files that were removed. Each fragment may have more than one
* file.
*/
filesRemoved: number
/**
* The number of files added. This is typically equal to the number of
* fragments added.
*/
filesAdded: number
} }
/// Config to build IVF_PQ index. /// Config to build IVF_PQ index.

View File

@@ -18,13 +18,16 @@ import * as chaiAsPromised from 'chai-as-promised'
import { v4 as uuidv4 } from 'uuid' import { v4 as uuidv4 } from 'uuid'
import * as lancedb from '../index' import * as lancedb from '../index'
import { tmpdir } from 'os'
import * as fs from 'fs'
import * as path from 'path'
const assert = chai.assert const assert = chai.assert
chai.use(chaiAsPromised) chai.use(chaiAsPromised)
describe('LanceDB AWS Integration test', function () { describe('LanceDB AWS Integration test', function () {
it('s3+ddb schema is processed correctly', async function () { it('s3+ddb schema is processed correctly', async function () {
this.timeout(5000) this.timeout(15000)
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet // WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
// THE API WILL CHANGE // THE API WILL CHANGE
@@ -41,3 +44,130 @@ describe('LanceDB AWS Integration test', function () {
assert.equal(await table.countRows(), 6) assert.equal(await table.countRows(), 6)
}) })
}) })
describe('LanceDB Mirrored Store Integration test', function () {
it('s3://...?mirroredStore=... param is processed correctly', async function () {
this.timeout(600000)
const dir = tmpdir()
console.log(dir)
const conn = await lancedb.connect(`s3://lancedb-integtest?mirroredStore=${dir}`)
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 1 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 2 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 3 }))
const tableName = uuidv4()
// try create table and check if it's mirrored
const t = await conn.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite })
const mirroredPath = path.join(dir, `${tableName}.lance`)
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be two dirs
assert.equal(files.length, 2)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
})
// try create index and check if it's mirrored
await t.createIndex({ column: 'vector', type: 'ivf_pq' })
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be two dirs
assert.equal(files.length, 3)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
// Two TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 2)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
})
// try delete and check if it's mirrored
await t.delete('id = 0')
fs.readdir(mirroredPath, { withFileTypes: true }, (err, files) => {
if (err != null) throw err
// there should be two dirs
assert.equal(files.length, 4)
assert.isTrue(files[0].isDirectory())
assert.isTrue(files[1].isDirectory())
assert.isTrue(files[2].isDirectory())
assert.isTrue(files[3].isDirectory())
// Three TXs now
fs.readdir(path.join(mirroredPath, '_transactions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 3)
assert.isTrue(files[0].name.endsWith('.txn'))
assert.isTrue(files[1].name.endsWith('.txn'))
})
fs.readdir(path.join(mirroredPath, 'data'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.lance'))
})
fs.readdir(path.join(mirroredPath, '_indices'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isDirectory())
fs.readdir(path.join(mirroredPath, '_indices', files[0].name), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].isFile())
assert.isTrue(files[0].name.endsWith('.idx'))
})
})
fs.readdir(path.join(mirroredPath, '_deletions'), { withFileTypes: true }, (err, files) => {
if (err != null) throw err
assert.equal(files.length, 1)
assert.isTrue(files[0].name.endsWith('.arrow'))
})
})
})
})

View File

@@ -18,8 +18,8 @@ import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised' import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index' import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index' import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions, type LocalTable } from '../index'
import { Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray } from 'apache-arrow' import { FixedSizeList, Field, Int32, makeVector, Schema, Utf8, Table as ArrowTable, vectorFromArray, Float32 } from 'apache-arrow'
const expect = chai.expect const expect = chai.expect
const assert = chai.assert const assert = chai.assert
@@ -258,6 +258,36 @@ describe('LanceDB client', function () {
}) })
}) })
describe('when searching an empty dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when searching an empty-after-delete dataset', function () {
it('should not fail', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const schema = new Schema(
[new Field('vector', new FixedSizeList(128, new Field('float32', new Float32())))]
)
const table = await con.createTable({ name: 'vectors', schema })
await table.add([{ vector: Array(128).fill(0.1) }])
await table.delete('vector IS NOT NULL')
const result = await table.search(Array(128).fill(0.1)).execute()
assert.isEmpty(result)
})
})
describe('when creating a vector index', function () { describe('when creating a vector index', function () {
it('overwrite all records in a table', async function () { it('overwrite all records in a table', async function () {
const uri = await createTestDB(32, 300) const uri = await createTestDB(32, 300)
@@ -416,3 +446,45 @@ describe('WriteOptions', function () {
}) })
}) })
}) })
describe('Compact and cleanup', function () {
it('can cleanup after compaction', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ price: 10, name: 'foo', vector: [1, 2, 3] },
{ price: 50, name: 'bar', vector: [4, 5, 6] }
]
const table = await con.createTable('t1', data) as LocalTable
const newData = [
{ price: 30, name: 'baz', vector: [7, 8, 9] }
]
await table.add(newData)
const compactionMetrics = await table.compactFiles({
numThreads: 2
})
assert.equal(compactionMetrics.fragmentsRemoved, 2)
assert.equal(compactionMetrics.fragmentsAdded, 1)
assert.equal(await table.countRows(), 3)
await table.cleanupOldVersions()
assert.equal(await table.countRows(), 3)
// should have no effect, but this validates the arguments are parsed.
await table.compactFiles({
targetRowsPerFragment: 1024 * 10,
maxRowsPerGroup: 1024,
materializeDeletions: true,
materializeDeletionsThreshold: 0.5,
numThreads: 2
})
const cleanupMetrics = await table.cleanupOldVersions(0, true)
assert.isAtLeast(cleanupMetrics.bytesRemoved, 1)
assert.isAtLeast(cleanupMetrics.oldVersions, 1)
assert.equal(await table.countRows(), 3)
})
})

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.2.4 current_version = 0.3.1
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -16,7 +16,7 @@ pip install lancedb
import lancedb import lancedb
db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>') db = lancedb.connect('<PATH_TO_LANCEDB_DATASET>')
table = db.open_table('my_table') table = db.open_table('my_table')
results = table.search([0.1, 0.3]).limit(20).to_df() results = table.search([0.1, 0.3]).limit(20).to_list()
print(results) print(results)
``` ```

View File

@@ -11,11 +11,15 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import importlib.metadata
from typing import Optional from typing import Optional
__version__ = importlib.metadata.version("lancedb")
from .db import URI, DBConnection, LanceDBConnection from .db import URI, DBConnection, LanceDBConnection
from .remote.db import RemoteDBConnection from .remote.db import RemoteDBConnection
from .schema import vector from .schema import vector
from .utils import sentry_log
def connect( def connect(

View File

@@ -0,0 +1,12 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

46
python/lancedb/cli/cli.py Normal file
View File

@@ -0,0 +1,46 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import click
from lancedb.utils import CONFIG
@click.group()
@click.version_option(help="LanceDB command line interface entry point")
def cli():
"LanceDB command line interface"
diagnostics_help = """
Enable or disable LanceDB diagnostics. When enabled, LanceDB will send anonymous events to help us improve LanceDB.
These diagnostics are used only for error reporting and no data is collected. You can find more about diagnosis on
our docs: https://lancedb.github.io/lancedb/cli_config/
"""
@cli.command(help=diagnostics_help)
@click.option("--enabled/--disabled", default=True)
def diagnostics(enabled):
CONFIG.update({"diagnostics": True if enabled else False})
click.echo("LanceDB diagnostics is %s" % ("enabled" if enabled else "disabled"))
@cli.command(help="Show current LanceDB configuration")
def config():
# TODO: pretty print as table with colors and formatting
click.echo("Current LanceDB configuration:")
cfg = CONFIG.copy()
cfg.pop("uuid") # Don't show uuid as it is not configurable
for item, amount in cfg.items():
click.echo("{} ({})".format(item, amount))

View File

@@ -1,9 +1,9 @@
import os import os
import pyarrow as pa import numpy as np
import pytest import pytest
from lancedb.embeddings import EmbeddingFunctionModel, EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionRegistry, TextEmbeddingFunction
# import lancedb so we don't have to in every example # import lancedb so we don't have to in every example
@@ -22,17 +22,19 @@ def doctest_setup(monkeypatch, tmpdir):
registry = EmbeddingFunctionRegistry.get_instance() registry = EmbeddingFunctionRegistry.get_instance()
@registry.register() @registry.register("test")
class MockEmbeddingFunction(EmbeddingFunctionModel): class MockTextEmbeddingFunction(TextEmbeddingFunction):
def __call__(self, data): """
if isinstance(data, str): Return the hash of the first 10 characters
data = [data] """
elif isinstance(data, pa.ChunkedArray):
data = data.combine_chunks().to_pylist()
elif isinstance(data, pa.Array):
data = data.to_pylist()
return [self.embed(row) for row in data] def generate_embeddings(self, texts):
return [self._compute_one_embedding(row) for row in texts]
def embed(self, row): def _compute_one_embedding(self, row):
return [float(hash(c)) for c in row[:10]] emb = np.array([float(hash(c)) for c in row[:10]])
emb /= np.linalg.norm(emb)
return emb
def ndims(self):
return 10

View File

@@ -12,6 +12,9 @@
# limitations under the License. # limitations under the License.
from __future__ import annotations from __future__ import annotations
import deprecation
from . import __version__
from .exceptions import MissingColumnError, MissingValueError from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas from .util import safe_import_pandas
@@ -43,7 +46,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
this how many tokens, but depending on the input data, it could be sentences, this how many tokens, but depending on the input data, it could be sentences,
paragraphs, messages, etc. paragraphs, messages, etc.
>>> contextualize(data).window(3).stride(1).text_col('token').to_df() >>> contextualize(data).window(3).stride(1).text_col('token').to_pandas()
token document_id token document_id
0 The quick brown 1 0 The quick brown 1
1 quick brown fox 1 1 quick brown fox 1
@@ -56,7 +59,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
8 dog I love 1 8 dog I love 1
9 I love sandwiches 2 9 I love sandwiches 2
10 love sandwiches 2 10 love sandwiches 2
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_df() >>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_pandas()
token document_id token document_id
0 The quick brown fox jumped over the 1 0 The quick brown fox jumped over the 1
1 quick brown fox jumped over the lazy 1 1 quick brown fox jumped over the lazy 1
@@ -68,7 +71,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
``stride`` determines how many rows to skip between each window start. This can ``stride`` determines how many rows to skip between each window start. This can
be used to reduce the total number of windows generated. be used to reduce the total number of windows generated.
>>> contextualize(data).window(4).stride(2).text_col('token').to_df() >>> contextualize(data).window(4).stride(2).text_col('token').to_pandas()
token document_id token document_id
0 The quick brown fox 1 0 The quick brown fox 1
2 brown fox jumped over 1 2 brown fox jumped over 1
@@ -81,7 +84,7 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
context windows that don't cross document boundaries. In this case, we can context windows that don't cross document boundaries. In this case, we can
pass ``document_id`` as the group by. pass ``document_id`` as the group by.
>>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_df() >>> contextualize(data).window(4).stride(2).text_col('token').groupby('document_id').to_pandas()
token document_id token document_id
0 The quick brown fox 1 0 The quick brown fox 1
2 brown fox jumped over 1 2 brown fox jumped over 1
@@ -93,14 +96,14 @@ def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
This can be used to trim the last few context windows which have size less than This can be used to trim the last few context windows which have size less than
``min_window_size``. By default context windows of size 1 are skipped. ``min_window_size``. By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_df() >>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_pandas()
token document_id token document_id
0 The quick brown fox jumped over 1 0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1 3 fox jumped over the lazy dog 1
6 the lazy dog 1 6 the lazy dog 1
9 I love sandwiches 2 9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_df() >>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_pandas()
token document_id token document_id
0 The quick brown fox jumped over 1 0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1 3 fox jumped over the lazy dog 1
@@ -176,7 +179,16 @@ class Contextualizer:
self._min_window_size = min_window_size self._min_window_size = min_window_size
return self return self
@deprecation.deprecated(
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use the bar function instead",
)
def to_df(self) -> "pd.DataFrame": def to_df(self) -> "pd.DataFrame":
return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame":
"""Create the context windows and return a DataFrame.""" """Create the context windows and return a DataFrame."""
if pd is None: if pd is None:
raise ImportError( raise ImportError(

View File

@@ -22,7 +22,7 @@ import pyarrow as pa
from pyarrow import fs from pyarrow import fs
from .common import DATA, URI from .common import DATA, URI
from .embeddings import EmbeddingFunctionModel from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel from .pydantic import LanceModel
from .table import LanceTable, Table from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme from .util import fs_from_uri, get_uri_location, get_uri_scheme
@@ -290,7 +290,7 @@ class LanceDBConnection(DBConnection):
mode: str = "create", mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionModel]] = None, embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> LanceTable: ) -> LanceTable:
"""Create a table in the database. """Create a table in the database.

View File

@@ -12,11 +12,14 @@
# limitations under the License. # limitations under the License.
from .cohere import CohereEmbeddingFunction
from .functions import ( from .functions import (
REGISTRY, EmbeddingFunction,
EmbeddingFunctionModel, EmbeddingFunctionConfig,
EmbeddingFunctionRegistry, EmbeddingFunctionRegistry,
SentenceTransformerEmbeddingFunction, OpenAIEmbeddings,
TextEmbeddingFunctionModel, OpenClipEmbeddings,
SentenceTransformerEmbeddings,
TextEmbeddingFunction,
) )
from .utils import with_embeddings from .utils import with_embeddings

View File

@@ -0,0 +1,86 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import ClassVar, List, Union
import numpy as np
from .functions import TextEmbeddingFunction, register
from .utils import api_key_not_found_help
@register("cohere")
class CohereEmbeddingFunction(TextEmbeddingFunction):
"""
An embedding function that uses the Cohere API
https://docs.cohere.com/docs/multilingual-language-models
Parameters
----------
name: str, default "embed-multilingual-v2.0"
The name of the model to use. See the Cohere documentation for a list of available models.
Examples
--------
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry.get_instance().get("cohere").create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
"""
name: str = "embed-multilingual-v2.0"
client: ClassVar = None
def ndims(self):
# TODO: fix hardcoding
return 768
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
self._init_client()
rs = CohereEmbeddingFunction.client.embed(texts=texts, model=self.name)
return [emb for emb in rs.embeddings]
def _init_client(self):
cohere = self.safe_import("cohere")
if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere")
CohereEmbeddingFunction.client = cohere.Client(os.environ["COHERE_API_KEY"])

View File

@@ -10,43 +10,79 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import concurrent.futures
import importlib
import io
import json import json
import os
import socket
import urllib.error
import urllib.parse as urlparse
import urllib.request
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Optional, Union from typing import Dict, List, Optional, Union
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
from cachetools import cached from cachetools import cached
from pydantic import BaseModel from pydantic import BaseModel, Field, PrivateAttr
from tqdm import tqdm
class EmbeddingFunctionRegistry: class EmbeddingFunctionRegistry:
""" """
This is a singleton class used to register embedding functions This is a singleton class used to register embedding functions
and fetch them by name. It also handles serializing and deserializing and fetch them by name. It also handles serializing and deserializing.
You can implement your own embedding function by subclassing EmbeddingFunction
or TextEmbeddingFunction and registering it with the registry.
Examples
--------
>>> registry = EmbeddingFunctionRegistry.get_instance()
>>> @registry.register("my-embedding-function")
... class MyEmbeddingFunction(EmbeddingFunction):
... def ndims(self) -> int:
... return 128
...
... def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
... return self.compute_source_embeddings(query, *args, **kwargs)
...
... def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
... return [np.random.rand(self.ndims()) for _ in range(len(texts))]
...
>>> registry.get("my-embedding-function")
<class 'lancedb.embeddings.functions.MyEmbeddingFunction'>
""" """
@classmethod @classmethod
def get_instance(cls): def get_instance(cls):
return REGISTRY return __REGISTRY__
def __init__(self): def __init__(self):
self._functions = {} self._functions = {}
def register(self): def register(self, alias: str = None):
""" """
This creates a decorator that can be used to register This creates a decorator that can be used to register
an EmbeddingFunctionModel. an EmbeddingFunction.
Parameters
----------
alias : Optional[str]
a human friendly name for the embedding function. If not
provided, the class name will be used.
""" """
# This is a decorator for a class that inherits from BaseModel # This is a decorator for a class that inherits from BaseModel
# It adds the class to the registry # It adds the class to the registry
def decorator(cls): def decorator(cls):
if not issubclass(cls, EmbeddingFunctionModel): if not issubclass(cls, EmbeddingFunction):
raise TypeError("Must be a subclass of EmbeddingFunctionModel") raise TypeError("Must be a subclass of EmbeddingFunction")
if cls.__name__ in self._functions: if cls.__name__ in self._functions:
raise KeyError(f"{cls.__name__} was already registered") raise KeyError(f"{cls.__name__} was already registered")
self._functions[cls.__name__] = cls key = alias or cls.__name__
self._functions[key] = cls
cls.__embedding_function_registry_alias__ = alias
return cls return cls
return decorator return decorator
@@ -57,13 +93,22 @@ class EmbeddingFunctionRegistry:
""" """
self._functions = {} self._functions = {}
def load(self, name: str): def get(self, name: str):
""" """
Fetch an embedding function class by name Fetch an embedding function class by name
Parameters
----------
name : str
The name of the embedding function to fetch
Either the alias or the class name if no alias was provided
during registration
""" """
return self._functions[name] return self._functions[name]
def parse_functions(self, metadata: Optional[dict]) -> dict: def parse_functions(
self, metadata: Optional[Dict[bytes, bytes]]
) -> Dict[str, "EmbeddingFunctionConfig"]:
""" """
Parse the metadata from an arrow table and Parse the metadata from an arrow table and
return a mapping of the vector column to the return a mapping of the vector column to the
@@ -71,9 +116,9 @@ class EmbeddingFunctionRegistry:
Parameters Parameters
---------- ----------
metadata : Optional[dict] metadata : Optional[Dict[bytes, bytes]]
The metadata from an arrow table. Note that The metadata from an arrow table. Note that
the keys and values are bytes. the keys and values are bytes (pyarrow api)
Returns Returns
------- -------
@@ -86,68 +131,94 @@ class EmbeddingFunctionRegistry:
return {} return {}
serialized = metadata[b"embedding_functions"] serialized = metadata[b"embedding_functions"]
raw_list = json.loads(serialized.decode("utf-8")) raw_list = json.loads(serialized.decode("utf-8"))
functions = {} return {
for obj in raw_list: obj["vector_column"]: EmbeddingFunctionConfig(
model = self.load(obj["schema"]["title"]) vector_column=obj["vector_column"],
functions[obj["model"]["vector_column"]] = model(**obj["model"]) source_column=obj["source_column"],
return functions function=self.get(obj["name"])(**obj["model"]),
)
for obj in raw_list
}
def function_to_metadata(self, func): def function_to_metadata(self, conf: "EmbeddingFunctionConfig"):
""" """
Convert the given embedding function and source / vector column configs Convert the given embedding function and source / vector column configs
into a config dictionary that can be serialized into arrow metadata into a config dictionary that can be serialized into arrow metadata
""" """
schema = func.model_json_schema() func = conf.function
json_data = func.model_dump() name = getattr(
func, "__embedding_function_registry_alias__", func.__class__.__name__
)
json_data = func.safe_model_dump()
return { return {
"schema": schema, "name": name,
"model": json_data, "model": json_data,
"source_column": conf.source_column,
"vector_column": conf.vector_column,
} }
def get_table_metadata(self, func_list): def get_table_metadata(self, func_list):
""" """
Convert a list of embedding functions and source / vector column configs Convert a list of embedding functions and source / vector configs
into a config dictionary that can be serialized into arrow metadata into a config dictionary that can be serialized into arrow metadata
""" """
if func_list is None or len(func_list) == 0:
return None
json_data = [self.function_to_metadata(func) for func in func_list] json_data = [self.function_to_metadata(func) for func in func_list]
# Note that metadata dictionary values must be bytes so we need to json dump then utf8 encode # Note that metadata dictionary values must be bytes
# so we need to json dump then utf8 encode
metadata = json.dumps(json_data, indent=2).encode("utf-8") metadata = json.dumps(json_data, indent=2).encode("utf-8")
return {"embedding_functions": metadata} return {"embedding_functions": metadata}
REGISTRY = EmbeddingFunctionRegistry() # Global instance
__REGISTRY__ = EmbeddingFunctionRegistry()
class EmbeddingFunctionModel(BaseModel, ABC):
"""
A callable ABC for embedding functions
"""
source_column: Optional[str]
vector_column: str
@abstractmethod
def __call__(self, *args, **kwargs) -> List[np.array]:
pass
TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray] TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
]
class TextEmbeddingFunctionModel(EmbeddingFunctionModel): class EmbeddingFunction(BaseModel, ABC):
""" """
A callable ABC for embedding functions that take text as input An ABC for embedding functions.
All concrete embedding functions must implement the following:
1. compute_query_embeddings() which takes a query and returns a list of embeddings
2. get_source_embeddings() which returns a list of embeddings for the source column
For text data, the two will be the same. For multi-modal data, the source column
might be images and the vector column might be text.
3. ndims method which returns the number of dimensions of the vector column
""" """
def __call__(self, texts: TEXT, *args, **kwargs) -> List[np.array]: _ndims: int = PrivateAttr()
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts) @classmethod
def create(cls, **kwargs):
"""
Create an instance of the embedding function
"""
return cls(**kwargs)
@abstractmethod
def compute_query_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for a given user query
"""
pass
@abstractmethod
def compute_source_embeddings(self, *args, **kwargs) -> List[np.array]:
"""
Compute the embeddings for the source column in the database
"""
pass
def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]: def sanitize_input(self, texts: TEXT) -> Union[List[str], np.ndarray]:
""" """
Sanitize the input to the embedding function. This is called Sanitize the input to the embedding function.
before generate_embeddings() and is useful for stripping
whitespace, lowercasing, etc.
""" """
if isinstance(texts, str): if isinstance(texts, str):
texts = [texts] texts = [texts]
@@ -157,6 +228,78 @@ class TextEmbeddingFunctionModel(EmbeddingFunctionModel):
texts = texts.combine_chunks().to_pylist() texts = texts.combine_chunks().to_pylist()
return texts return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION
if PYDANTIC_VERSION.major < 2:
return dict(self)
return self.model_dump()
@abstractmethod
def ndims(self):
"""
Return the dimensions of the vector column
"""
pass
def SourceField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the source column for this embedding function
"""
return Field(json_schema_extra={"source_column_for": self}, **kwargs)
def VectorField(self, **kwargs):
"""
Creates a pydantic Field that can automatically annotate
the target vector column for this embedding function
"""
return Field(json_schema_extra={"vector_column_for": self}, **kwargs)
class EmbeddingFunctionConfig(BaseModel):
"""
This model encapsulates the configuration for a embedding function
in a lancedb table. It holds the embedding function, the source column,
and the vector column
"""
vector_column: str
source_column: str
function: EmbeddingFunction
class TextEmbeddingFunction(EmbeddingFunction):
"""
A callable ABC for embedding functions that take text as input
"""
def compute_query_embeddings(self, query: str, *args, **kwargs) -> List[np.array]:
return self.compute_source_embeddings(query, *args, **kwargs)
def compute_source_embeddings(self, texts: TEXT, *args, **kwargs) -> List[np.array]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
@abstractmethod @abstractmethod
def generate_embeddings( def generate_embeddings(
self, texts: Union[List[str], np.ndarray] self, texts: Union[List[str], np.ndarray]
@@ -167,15 +310,25 @@ class TextEmbeddingFunctionModel(EmbeddingFunctionModel):
pass pass
@REGISTRY.register() # @EmbeddingFunctionRegistry.get_instance().register(name) doesn't work in 3.8
class SentenceTransformerEmbeddingFunction(TextEmbeddingFunctionModel): register = lambda name: EmbeddingFunctionRegistry.get_instance().register(name)
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
""" """
An embedding function that uses the sentence-transformers library An embedding function that uses the sentence-transformers library
https://huggingface.co/sentence-transformers
""" """
name: str = "all-MiniLM-L6-v2" name: str = "all-MiniLM-L6-v2"
device: str = "cpu" device: str = "cpu"
normalize: bool = False normalize: bool = True
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
@property @property
def embedding_model(self): def embedding_model(self):
@@ -186,6 +339,11 @@ class SentenceTransformerEmbeddingFunction(TextEmbeddingFunctionModel):
""" """
return self.__class__.get_embedding_model(self.name, self.device) return self.__class__.get_embedding_model(self.name, self.device)
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings( def generate_embeddings(
self, texts: Union[List[str], np.ndarray] self, texts: Union[List[str], np.ndarray]
) -> List[np.array]: ) -> List[np.array]:
@@ -220,9 +378,201 @@ class SentenceTransformerEmbeddingFunction(TextEmbeddingFunctionModel):
TODO: use lru_cache instead with a reasonable/configurable maxsize TODO: use lru_cache instead with a reasonable/configurable maxsize
""" """
try: sentence_transformers = cls.safe_import(
from sentence_transformers import SentenceTransformer "sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(name, device=device)
return SentenceTransformer(name, device=device)
except ImportError: @register("openai")
raise ValueError("Please install sentence_transformers") class OpenAIEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses the OpenAI API
https://platform.openai.com/docs/guides/embeddings
"""
name: str = "text-embedding-ada-002"
def ndims(self):
# TODO don't hardcode this
return 1536
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
openai = self.safe_import("openai")
rs = openai.Embedding.create(input=texts, model=self.name)["data"]
return [v["embedding"] for v in rs]
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the OpenClip API
For multi-modal text-to-image search
https://github.com/mlfoundations/open_clip
"""
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = self.safe_import("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in tqdm(futures)]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = self.safe_import("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor.to(self.device))
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
def url_retrieve(url: str):
"""
Parameters
----------
url: str
URL to download from
"""
try:
with urllib.request.urlopen(url) as conn:
return conn.read()
except (socket.gaierror, urllib.error.URLError) as err:
raise ConnectionError("could not download {} due to {}".format(url, err))

View File

@@ -21,6 +21,7 @@ from lance.vector import vec_to_table
from retry import retry from retry import retry
from ..util import safe_import_pandas from ..util import safe_import_pandas
from ..utils.general import LOGGER
pd = safe_import_pandas() pd = safe_import_pandas()
DATA = Union[pa.Table, "pd.DataFrame"] DATA = Union[pa.Table, "pd.DataFrame"]
@@ -152,3 +153,8 @@ class FunctionWrapper:
yield from tqdm(_chunker(arr), total=math.ceil(length / self._batch_size)) yield from tqdm(_chunker(arr), total=math.ceil(length / self._batch_size))
else: else:
yield from _chunker(arr) yield from _chunker(arr)
def api_key_not_found_help(provider):
LOGGER.error(f"Could not find API key for {provider}.")
raise ValueError(f"Please set the {provider.upper()}_API_KEY environment variable.")

View File

@@ -26,6 +26,8 @@ import pyarrow as pa
import pydantic import pydantic
import semver import semver
from .embeddings import EmbeddingFunctionRegistry
PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__) PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__)
try: try:
from pydantic_core import CoreSchema, core_schema from pydantic_core import CoreSchema, core_schema
@@ -126,7 +128,7 @@ def Vector(
def validate(cls, v): def validate(cls, v):
if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim: if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim:
raise TypeError("A list of numbers or numpy.ndarray is needed") raise TypeError("A list of numbers or numpy.ndarray is needed")
return v return cls(v)
if PYDANTIC_VERSION < (2, 0): if PYDANTIC_VERSION < (2, 0):
@@ -236,27 +238,18 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
>>> from typing import List, Optional >>> from typing import List, Optional
>>> import pydantic >>> import pydantic
>>> from lancedb.pydantic import pydantic_to_schema >>> from lancedb.pydantic import pydantic_to_schema
...
>>> class InnerModel(pydantic.BaseModel):
... a: str
... b: Optional[float]
>>>
>>> class FooModel(pydantic.BaseModel): >>> class FooModel(pydantic.BaseModel):
... id: int ... id: int
... s: Optional[str] = None ... s: str
... vec: List[float] ... vec: List[float]
... li: List[int] ... li: List[int]
... inner: InnerModel ...
>>> schema = pydantic_to_schema(FooModel) >>> schema = pydantic_to_schema(FooModel)
>>> assert schema == pa.schema([ >>> assert schema == pa.schema([
... pa.field("id", pa.int64(), False), ... pa.field("id", pa.int64(), False),
... pa.field("s", pa.utf8(), True), ... pa.field("s", pa.utf8(), False),
... pa.field("vec", pa.list_(pa.float64()), False), ... pa.field("vec", pa.list_(pa.float64()), False),
... pa.field("li", pa.list_(pa.int64()), False), ... pa.field("li", pa.list_(pa.int64()), False),
... pa.field("inner", pa.struct([
... pa.field("a", pa.utf8(), False),
... pa.field("b", pa.float64(), True),
... ]), False),
... ]) ... ])
""" """
fields = _pydantic_model_to_fields(model) fields = _pydantic_model_to_fields(model)
@@ -290,13 +283,58 @@ class LanceModel(pydantic.BaseModel):
""" """
Get the Arrow Schema for this model. Get the Arrow Schema for this model.
""" """
return pydantic_to_schema(cls) schema = pydantic_to_schema(cls)
functions = cls.parse_embedding_functions()
if len(functions) > 0:
metadata = EmbeddingFunctionRegistry.get_instance().get_table_metadata(
functions
)
schema = schema.with_metadata(metadata)
return schema
@classmethod @classmethod
def field_names(cls) -> List[str]: def field_names(cls) -> List[str]:
""" """
Get the field names of this model. Get the field names of this model.
""" """
return list(cls.safe_get_fields().keys())
@classmethod
def safe_get_fields(cls):
if PYDANTIC_VERSION.major < 2: if PYDANTIC_VERSION.major < 2:
return list(cls.__fields__.keys()) return cls.__fields__
return list(cls.model_fields.keys()) return cls.model_fields
@classmethod
def parse_embedding_functions(cls) -> List["EmbeddingFunctionConfig"]:
"""
Parse the embedding functions from this model.
"""
from .embeddings import EmbeddingFunctionConfig
vec_and_function = []
for name, field_info in cls.safe_get_fields().items():
func = get_extras(field_info, "vector_column_for")
if func is not None:
vec_and_function.append([name, func])
configs = []
for vec, func in vec_and_function:
for source, field_info in cls.safe_get_fields().items():
src_func = get_extras(field_info, "source_column_for")
if src_func == func:
configs.append(
EmbeddingFunctionConfig(
source_column=source, vector_column=vec, function=func
)
)
return configs
def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
"""
Get the extra metadata from a Pydantic FieldInfo.
"""
if PYDANTIC_VERSION.major >= 2:
return (field_info.json_schema_extra or {}).get(key)
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)

View File

@@ -16,10 +16,12 @@ from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Literal, Optional, Type, Union from typing import List, Literal, Optional, Type, Union
import deprecation
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
import pydantic import pydantic
from . import __version__
from .common import VECTOR_COLUMN_NAME from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel from .pydantic import LanceModel
from .util import safe_import_pandas from .util import safe_import_pandas
@@ -38,6 +40,9 @@ class Query(pydantic.BaseModel):
# sql filter to refine the query with # sql filter to refine the query with
filter: Optional[str] = None filter: Optional[str] = None
# if True then apply the filter before vector search
prefilter: bool = False
# top k results to return # top k results to return
k: int k: int
@@ -60,13 +65,15 @@ class LanceQueryBuilder(ABC):
def create( def create(
cls, cls,
table: "lancedb.table.Table", table: "lancedb.table.Table",
query: Optional[Union[np.ndarray, str]], query: Optional[Union[np.ndarray, str, "PIL.Image.Image"]],
query_type: str, query_type: str,
vector_column_name: str, vector_column_name: str,
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
if query is None: if query is None:
return LanceEmptyQueryBuilder(table) return LanceEmptyQueryBuilder(table)
# convert "auto" query_type to "vector" or "fts"
# and convert the query to vector if needed
query, query_type = cls._resolve_query( query, query_type = cls._resolve_query(
table, query, query_type, vector_column_name table, query, query_type, vector_column_name
) )
@@ -90,30 +97,27 @@ class LanceQueryBuilder(ABC):
# otherwise raise TypeError # otherwise raise TypeError
if query_type == "fts": if query_type == "fts":
if not isinstance(query, str): if not isinstance(query, str):
raise TypeError( raise TypeError(f"'fts' queries must be a string: {type(query)}")
f"Query type is 'fts' but query is not a string: {type(query)}"
)
return query, query_type return query, query_type
elif query_type == "vector": elif query_type == "vector":
# If query_type is vector, then query must be a list or np.ndarray.
# otherwise raise TypeError
if not isinstance(query, (list, np.ndarray)): if not isinstance(query, (list, np.ndarray)):
raise TypeError( conf = table.embedding_functions.get(vector_column_name)
f"Query type is 'vector' but query is not a list or np.ndarray: {type(query)}" if conf is not None:
) query = conf.function.compute_query_embeddings(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
return query, query_type return query, query_type
elif query_type == "auto": elif query_type == "auto":
if isinstance(query, (list, np.ndarray)): if isinstance(query, (list, np.ndarray)):
return query, "vector" return query, "vector"
elif isinstance(query, str): else:
func = table.embedding_functions.get(vector_column_name, None) conf = table.embedding_functions.get(vector_column_name)
if func is not None: if conf is not None:
query = func(query)[0] query = conf.function.compute_query_embeddings(query)[0]
return query, "vector" return query, "vector"
else: else:
return query, "fts" return query, "fts"
else:
raise TypeError("Query must be a list, np.ndarray, or str")
else: else:
raise ValueError( raise ValueError(
f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}" f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}"
@@ -125,7 +129,24 @@ class LanceQueryBuilder(ABC):
self._columns = None self._columns = None
self._where = None self._where = None
@deprecation.deprecated(
deprecated_in="0.3.1",
removed_in="0.4.0",
current_version=__version__,
details="Use the bar function instead",
)
def to_df(self) -> "pd.DataFrame": def to_df(self) -> "pd.DataFrame":
"""
Deprecated alias for `to_pandas()`. Please use `to_pandas()` instead.
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
and also the "_distance" column which is the distance between the query
vector and the returned vector.
"""
return self.to_pandas()
def to_pandas(self) -> "pd.DataFrame":
""" """
Execute the query and return the results as a pandas DataFrame. Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
@@ -146,6 +167,16 @@ class LanceQueryBuilder(ABC):
""" """
raise NotImplementedError raise NotImplementedError
def to_list(self) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
"""
return self.to_arrow().to_pylist()
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]: def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models. """Return the table as a list of pydantic models.
@@ -163,7 +194,7 @@ class LanceQueryBuilder(ABC):
for row in self.to_arrow().to_pylist() for row in self.to_arrow().to_pylist()
] ]
def limit(self, limit: int) -> LanceVectorQueryBuilder: def limit(self, limit: int) -> LanceQueryBuilder:
"""Set the maximum number of results to return. """Set the maximum number of results to return.
Parameters Parameters
@@ -173,13 +204,13 @@ class LanceQueryBuilder(ABC):
Returns Returns
------- -------
LanceVectorQueryBuilder LanceQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._limit = limit self._limit = limit
return self return self
def select(self, columns: list) -> LanceVectorQueryBuilder: def select(self, columns: list) -> LanceQueryBuilder:
"""Set the columns to return. """Set the columns to return.
Parameters Parameters
@@ -189,13 +220,13 @@ class LanceQueryBuilder(ABC):
Returns Returns
------- -------
LanceVectorQueryBuilder LanceQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._columns = columns self._columns = columns
return self return self
def where(self, where: str) -> LanceVectorQueryBuilder: def where(self, where) -> LanceQueryBuilder:
"""Set the where clause. """Set the where clause.
Parameters Parameters
@@ -205,7 +236,7 @@ class LanceQueryBuilder(ABC):
Returns Returns
------- -------
LanceVectorQueryBuilder LanceQueryBuilder
The LanceQueryBuilder object. The LanceQueryBuilder object.
""" """
self._where = where self._where = where
@@ -230,7 +261,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
... .where("b < 10") ... .where("b < 10")
... .select(["b"]) ... .select(["b"])
... .limit(2) ... .limit(2)
... .to_df()) ... .to_pandas())
b vector _distance b vector _distance
0 6 [0.4, 0.4] 0.0 0 6 [0.4, 0.4] 0.0
""" """
@@ -238,7 +269,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
def __init__( def __init__(
self, self,
table: "lancedb.table.Table", table: "lancedb.table.Table",
query: Union[np.ndarray, list], query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str = VECTOR_COLUMN_NAME, vector_column: str = VECTOR_COLUMN_NAME,
): ):
super().__init__(table) super().__init__(table)
@@ -247,6 +278,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self._nprobes = 20 self._nprobes = 20
self._refine_factor = None self._refine_factor = None
self._vector_column = vector_column self._vector_column = vector_column
self._prefilter = False
def metric(self, metric: Literal["L2", "cosine"]) -> LanceVectorQueryBuilder: def metric(self, metric: Literal["L2", "cosine"]) -> LanceVectorQueryBuilder:
"""Set the distance metric to use. """Set the distance metric to use.
@@ -321,6 +353,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
query = Query( query = Query(
vector=vector, vector=vector,
filter=self._where, filter=self._where,
prefilter=self._prefilter,
k=self._limit, k=self._limit,
metric=self._metric, metric=self._metric,
columns=self._columns, columns=self._columns,
@@ -330,6 +363,30 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
) )
return self._table._execute_query(query) return self._table._execute_query(query)
def where(self, where: str, prefilter: bool = False) -> LanceVectorQueryBuilder:
"""Set the where clause.
Parameters
----------
where: str
The where clause.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
This feature is **EXPERIMENTAL** and may be removed and modified
without warning in the future. Currently this is only supported
in OSS and can only be used with a table that does not have an ANN
index.
Returns
-------
LanceQueryBuilder
The LanceQueryBuilder object.
"""
self._where = where
self._prefilter = prefilter
return self
class LanceFtsQueryBuilder(LanceQueryBuilder): class LanceFtsQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "lancedb.table.Table", query: str): def __init__(self, table: "lancedb.table.Table", query: str):

View File

@@ -14,7 +14,7 @@
import abc import abc
from typing import List, Optional from typing import List, Optional
import attr import attrs
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel from pydantic import BaseModel
@@ -44,7 +44,7 @@ class VectorQuery(BaseModel):
refine_factor: Optional[int] = None refine_factor: Optional[int] = None
@attr.define @attrs.define
class VectorQueryResult: class VectorQueryResult:
# for now the response is directly seralized into a pandas dataframe # for now the response is directly seralized into a pandas dataframe
tbl: pa.Table tbl: pa.Table

View File

@@ -16,7 +16,7 @@ import functools
from typing import Any, Callable, Dict, Optional, Union from typing import Any, Callable, Dict, Optional, Union
import aiohttp import aiohttp
import attr import attrs
import pyarrow as pa import pyarrow as pa
from pydantic import BaseModel from pydantic import BaseModel
@@ -43,14 +43,14 @@ async def _read_ipc(resp: aiohttp.ClientResponse) -> pa.Table:
return reader.read_all() return reader.read_all()
@attr.define(slots=False) @attrs.define(slots=False)
class RestfulLanceDBClient: class RestfulLanceDBClient:
db_name: str db_name: str
region: str region: str
api_key: Credential api_key: Credential
host_override: Optional[str] = attr.field(default=None) host_override: Optional[str] = attrs.field(default=None)
closed: bool = attr.field(default=False, init=False) closed: bool = attrs.field(default=False, init=False)
@functools.cached_property @functools.cached_property
def session(self) -> aiohttp.ClientSession: def session(self) -> aiohttp.ClientSession:

View File

@@ -18,10 +18,9 @@ from urllib.parse import urlparse
import pyarrow as pa import pyarrow as pa
from lancedb.common import DATA from ..common import DATA
from lancedb.db import DBConnection from ..db import DBConnection
from lancedb.table import Table, _sanitize_data from ..table import Table, _sanitize_data
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient

View File

@@ -13,7 +13,7 @@
import uuid import uuid
from functools import cached_property from functools import cached_property
from typing import Union from typing import Optional, Union
import pyarrow as pa import pyarrow as pa
from lance import json_to_schema from lance import json_to_schema
@@ -62,6 +62,7 @@ class RemoteTable(Table):
num_sub_vectors=96, num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None,
): ):
raise NotImplementedError raise NotImplementedError
@@ -98,6 +99,8 @@ class RemoteTable(Table):
return LanceVectorQueryBuilder(self, query, vector_column_name) return LanceVectorQueryBuilder(self, query, vector_column_name)
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
if query.prefilter:
raise NotImplementedError("Cloud support for prefiltering is coming soon")
result = self._conn._client.query(self._name, query) result = self._conn._client.query(self._name, query)
return self._conn._loop.run_until_complete(result).to_arrow() return self._conn._loop.run_until_complete(result).to_arrow()

View File

@@ -16,6 +16,7 @@ from __future__ import annotations
import inspect import inspect
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from datetime import timedelta
from functools import cached_property from functools import cached_property
from typing import Any, Iterable, List, Optional, Union from typing import Any, Iterable, List, Optional, Union
@@ -24,14 +25,16 @@ import numpy as np
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
from lance import LanceDataset from lance import LanceDataset
from lance.dataset import ReaderLike from lance.dataset import CleanupStats, ReaderLike
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .embeddings import EmbeddingFunctionModel, EmbeddingFunctionRegistry from .embeddings import EmbeddingFunctionRegistry
from .embeddings.functions import EmbeddingFunctionConfig
from .pydantic import LanceModel from .pydantic import LanceModel
from .query import LanceQueryBuilder, Query from .query import LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas from .util import fs_from_uri, safe_import_pandas
from .utils.events import register_event
pd = safe_import_pandas() pd = safe_import_pandas()
@@ -81,15 +84,16 @@ def _append_vector_col(data: pa.Table, metadata: dict, schema: Optional[pa.Schem
vector column to the table. vector column to the table.
""" """
functions = EmbeddingFunctionRegistry.get_instance().parse_functions(metadata) functions = EmbeddingFunctionRegistry.get_instance().parse_functions(metadata)
for vector_col, func in functions.items(): for vector_column, conf in functions.items():
if vector_col not in data.column_names: func = conf.function
col_data = func(data[func.source_column]) if vector_column not in data.column_names:
col_data = func.compute_source_embeddings(data[conf.source_column])
if schema is not None: if schema is not None:
dtype = schema.field(vector_col).type dtype = schema.field(vector_column).type
else: else:
dtype = pa.list_(pa.float32(), len(col_data[0])) dtype = pa.list_(pa.float32(), len(col_data[0]))
data = data.append_column( data = data.append_column(
pa.field(vector_col, type=dtype), pa.array(col_data, type=dtype) pa.field(vector_column, type=dtype), pa.array(col_data, type=dtype)
) )
return data return data
@@ -134,7 +138,7 @@ class Table(ABC):
Can query the table with [Table.search][lancedb.table.Table.search]. Can query the table with [Table.search][lancedb.table.Table.search].
>>> table.search([0.4, 0.4]).select(["b"]).to_df() >>> table.search([0.4, 0.4]).select(["b"]).to_pandas()
b vector _distance b vector _distance
0 4 [0.5, 1.3] 0.82 0 4 [0.5, 1.3] 0.82
1 2 [1.1, 1.2] 1.13 1 2 [1.1, 1.2] 1.13
@@ -178,6 +182,7 @@ class Table(ABC):
num_sub_vectors=96, num_sub_vectors=96,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None,
): ):
"""Create an index on the table. """Create an index on the table.
@@ -198,6 +203,9 @@ class Table(ABC):
replace: bool, default True replace: bool, default True
If True, replace the existing index if it exists. If True, replace the existing index if it exists.
If False, raise an error if duplicate index exists. If False, raise an error if duplicate index exists.
accelerator: str, default None
If set, use the given accelerator to create the index.
Only support "cuda" for now.
""" """
raise NotImplementedError raise NotImplementedError
@@ -230,7 +238,7 @@ class Table(ABC):
@abstractmethod @abstractmethod
def search( def search(
self, self,
query: Optional[Union[VEC, str]] = None, query: Optional[Union[VEC, str, "PIL.Image.Image"]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
@@ -239,7 +247,7 @@ class Table(ABC):
Parameters Parameters
---------- ----------
query: str, list, np.ndarray, default None query: str, list, np.ndarray, PIL.Image.Image, default None
The query to search for. If None then The query to search for. If None then
the select/where/limit clauses are applied to filter the select/where/limit clauses are applied to filter
the table the table
@@ -249,6 +257,8 @@ class Table(ABC):
"vector", "fts", or "auto" "vector", "fts", or "auto"
If "auto" then the query type is inferred from the query; If "auto" then the query type is inferred from the query;
If `query` is a list/np.ndarray then the query type is "vector"; If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found.
If `query` is a string, then the query type is "vector" if the If `query` is a string, then the query type is "vector" if the
table has embedding functions else the query type is "fts" table has embedding functions else the query type is "fts"
@@ -386,6 +396,17 @@ class LanceTable(Table):
raise ValueError(f"Invalid version {version}") raise ValueError(f"Invalid version {version}")
self._reset_dataset(version=version) self._reset_dataset(version=version)
try:
# Accessing the property updates the cached value
_ = self._dataset
except Exception as e:
if "not found" in str(e):
raise ValueError(
f"Version {version} no longer exists. Was it cleaned up?"
)
else:
raise e
def restore(self, version: int = None): def restore(self, version: int = None):
"""Restore a version of the table. This is an in-place operation. """Restore a version of the table. This is an in-place operation.
@@ -475,6 +496,7 @@ class LanceTable(Table):
num_sub_vectors=96, num_sub_vectors=96,
vector_column_name=VECTOR_COLUMN_NAME, vector_column_name=VECTOR_COLUMN_NAME,
replace: bool = True, replace: bool = True,
accelerator: Optional[str] = None,
): ):
"""Create an index on the table.""" """Create an index on the table."""
self._dataset.create_index( self._dataset.create_index(
@@ -484,8 +506,10 @@ class LanceTable(Table):
num_partitions=num_partitions, num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors, num_sub_vectors=num_sub_vectors,
replace=replace, replace=replace,
accelerator=accelerator,
) )
self._reset_dataset() self._reset_dataset()
register_event("create_index")
def create_fts_index(self, field_names: Union[str, List[str]]): def create_fts_index(self, field_names: Union[str, List[str]]):
"""Create a full-text search index on the table. """Create a full-text search index on the table.
@@ -504,6 +528,7 @@ class LanceTable(Table):
field_names = [field_names] field_names = [field_names]
index = create_index(self._get_fts_index_path(), field_names) index = create_index(self._get_fts_index_path(), field_names)
populate_index(index, self, field_names) populate_index(index, self, field_names)
register_event("create_fts_index")
def _get_fts_index_path(self): def _get_fts_index_path(self):
return os.path.join(self._dataset_uri, "_indices", "tantivy") return os.path.join(self._dataset_uri, "_indices", "tantivy")
@@ -524,6 +549,9 @@ class LanceTable(Table):
fill_value: float = 0.0, fill_value: float = 0.0,
): ):
"""Add data to the table. """Add data to the table.
If vector columns are missing and the table
has embedding functions, then the vector columns
are automatically computed and added.
Parameters Parameters
---------- ----------
@@ -553,6 +581,7 @@ class LanceTable(Table):
) )
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode) lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
self._reset_dataset() self._reset_dataset()
register_event("add")
def merge( def merge(
self, self,
@@ -616,12 +645,7 @@ class LanceTable(Table):
other_table, left_on=left_on, right_on=right_on, schema=schema other_table, left_on=left_on, right_on=right_on, schema=schema
) )
self._reset_dataset() self._reset_dataset()
register_event("merge")
def _get_embedding_function_for_source_col(self, column_name: str):
for k, v in self.embedding_functions.items():
if v.source_column == column_name:
return v
return None
@cached_property @cached_property
def embedding_functions(self) -> dict: def embedding_functions(self) -> dict:
@@ -640,7 +664,7 @@ class LanceTable(Table):
def search( def search(
self, self,
query: Optional[Union[VEC, str]] = None, query: Optional[Union[VEC, str, "PIL.Image.Image"]] = None,
vector_column_name: str = VECTOR_COLUMN_NAME, vector_column_name: str = VECTOR_COLUMN_NAME,
query_type: str = "auto", query_type: str = "auto",
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
@@ -649,7 +673,7 @@ class LanceTable(Table):
Parameters Parameters
---------- ----------
query: str, list, np.ndarray, or None query: str, list, np.ndarray, a PIL Image or None
The query to search for. If None then The query to search for. If None then
the select/where/limit clauses are applied to filter the select/where/limit clauses are applied to filter
the table the table
@@ -658,9 +682,11 @@ class LanceTable(Table):
query_type: str, default "auto" query_type: str, default "auto"
"vector", "fts", or "auto" "vector", "fts", or "auto"
If "auto" then the query type is inferred from the query; If "auto" then the query type is inferred from the query;
If the query is a list/np.ndarray then the query type is "vector"; If `query` is a list/np.ndarray then the query type is "vector";
If `query` is a PIL.Image.Image then either do vector search
or raise an error if no corresponding embedding function is found.
If the query is a string, then the query type is "vector" if the If the query is a string, then the query type is "vector" if the
table has embedding functions else the query type is "fts" table has embedding functions, else the query type is "fts"
Returns Returns
------- -------
@@ -670,6 +696,7 @@ class LanceTable(Table):
and also the "_distance" column which is the distance between the query and also the "_distance" column which is the distance between the query
vector and the returned vector. vector and the returned vector.
""" """
register_event("search")
return LanceQueryBuilder.create( return LanceQueryBuilder.create(
self, query, query_type, vector_column_name=vector_column_name self, query, query_type, vector_column_name=vector_column_name
) )
@@ -684,7 +711,7 @@ class LanceTable(Table):
mode="create", mode="create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
embedding_functions: List[EmbeddingFunctionModel] = None, embedding_functions: List[EmbeddingFunctionConfig] = None,
): ):
""" """
Create a new table. Create a new table.
@@ -727,10 +754,16 @@ class LanceTable(Table):
""" """
tbl = LanceTable(db, name) tbl = LanceTable(db, name)
if inspect.isclass(schema) and issubclass(schema, LanceModel): if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema
# note that it's possible this contains
# embedding function metadata already
schema = schema.to_arrow_schema() schema = schema.to_arrow_schema()
metadata = None metadata = None
if embedding_functions is not None: if embedding_functions is not None:
# If we passed in embedding functions explicitly
# then we'll override any schema metadata that
# may was implicitly specified by the LanceModel schema
registry = EmbeddingFunctionRegistry.get_instance() registry = EmbeddingFunctionRegistry.get_instance()
metadata = registry.get_table_metadata(embedding_functions) metadata = registry.get_table_metadata(embedding_functions)
@@ -767,6 +800,7 @@ class LanceTable(Table):
if data is not None: if data is not None:
table.add(data) table.add(data)
register_event("create_table")
return table return table
@classmethod @classmethod
@@ -832,12 +866,20 @@ class LanceTable(Table):
self.delete(where) self.delete(where)
self.add(orig_data, mode="append") self.add(orig_data, mode="append")
self._reset_dataset() self._reset_dataset()
register_event("update")
def _execute_query(self, query: Query) -> pa.Table: def _execute_query(self, query: Query) -> pa.Table:
ds = self.to_lance() ds = self.to_lance()
if query.prefilter:
for idx in ds.list_indices():
if query.vector_column in idx["fields"]:
raise NotImplementedError(
"Prefiltering for indexed vector column is coming soon."
)
return ds.to_table( return ds.to_table(
columns=query.columns, columns=query.columns,
filter=query.filter, filter=query.filter,
prefilter=query.prefilter,
nearest={ nearest={
"column": query.vector_column, "column": query.vector_column,
"q": query.vector, "q": query.vector,
@@ -848,6 +890,48 @@ class LanceTable(Table):
}, },
) )
def cleanup_old_versions(
self,
older_than: Optional[timedelta] = None,
*,
delete_unverified: bool = False,
) -> CleanupStats:
"""
Clean up old versions of the table, freeing disk space.
Parameters
----------
older_than: timedelta, default None
The minimum age of the version to delete. If None, then this defaults
to two weeks.
delete_unverified: bool, default False
Because they may be part of an in-progress transaction, files newer
than 7 days old are not deleted by default. If you are sure that
there are no in-progress transactions, then you can set this to True
to delete all files older than `older_than`.
Returns
-------
CleanupStats
The stats of the cleanup operation, including how many bytes were
freed.
"""
return self.to_lance().cleanup_old_versions(
older_than, delete_unverified=delete_unverified
)
def compact_files(self, *args, **kwargs):
"""
Run the compaction process on the table.
This can be run after making several small appends to optimize the table
for faster reads.
Arguments are passed onto :meth:`lance.dataset.DatasetOptimizer.compact_files`.
For most cases, the default should be fine.
"""
return self.to_lance().optimize.compact_files(*args, **kwargs)
def _sanitize_schema( def _sanitize_schema(
data: pa.Table, data: pa.Table,

View File

@@ -70,7 +70,11 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
Get a PyArrow FileSystem from a URI, handling extra environment variables. Get a PyArrow FileSystem from a URI, handling extra environment variables.
""" """
if get_uri_scheme(uri) == "s3": if get_uri_scheme(uri) == "s3":
fs = pa_fs.S3FileSystem(endpoint_override=os.environ.get("AWS_ENDPOINT")) fs = pa_fs.S3FileSystem(
endpoint_override=os.environ.get("AWS_ENDPOINT"),
request_timeout=30,
connect_timeout=30,
)
path = get_uri_location(uri) path = get_uri_location(uri)
return fs, path return fs, path

View File

@@ -0,0 +1,15 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .config import Config
CONFIG = Config()

View File

@@ -0,0 +1,116 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import hashlib
import os
import platform
import uuid
from pathlib import Path
from .general import LOGGER, is_dir_writeable, yaml_load, yaml_save
def get_user_config_dir(sub_dir="lancedb"):
"""
Get the user config directory.
Args:
sub_dir (str): The name of the subdirectory to create.
Returns:
(Path): The path to the user config directory.
"""
# Return the appropriate config directory for each operating system
if platform.system() == "Windows":
path = Path.home() / "AppData" / "Roaming" / sub_dir
elif platform.system() == "Darwin":
path = Path.home() / "Library" / "Application Support" / sub_dir
elif platform.system() == "Linux":
path = Path.home() / ".config" / sub_dir
else:
raise ValueError(f"Unsupported operating system: {platform.system()}")
# GCP and AWS lambda fix, only /tmp is writeable
if not is_dir_writeable(path.parent):
LOGGER.warning(
f"WARNING ⚠️ user config directory '{path}' is not writeable, defaulting to '/tmp' or CWD."
"Alternatively you can define a LANCEDB_CONFIG_DIR environment variable for this path."
)
path = (
Path("/tmp") / sub_dir
if is_dir_writeable("/tmp")
else Path().cwd() / sub_dir
)
# Create the subdirectory if it does not exist
path.mkdir(parents=True, exist_ok=True)
return path
USER_CONFIG_DIR = Path(os.getenv("LANCEDB_CONFIG_DIR") or get_user_config_dir())
CONFIG_FILE = USER_CONFIG_DIR / "config.yaml"
class Config(dict):
"""
Manages lancedb config stored in a YAML file.
Args:
file (str | Path): Path to the lancedb config YAML file. Default is USER_CONFIG_DIR / 'config.yaml'.
"""
def __init__(self, file=CONFIG_FILE):
self.file = Path(file)
self.defaults = { # Default global config values
"diagnostics": True,
"uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(),
}
super().__init__(copy.deepcopy(self.defaults))
if not self.file.exists():
self.save()
self.load()
correct_keys = self.keys() == self.defaults.keys()
correct_types = all(
type(a) is type(b) for a, b in zip(self.values(), self.defaults.values())
)
if not (correct_keys and correct_types):
LOGGER.warning(
"WARNING ⚠️ LanceDB settings reset to default values. This may be due to a possible problem "
"with your settings or a recent package update. "
f"\nView settings & usage with 'lancedb settings' or at '{self.file}'"
)
self.reset()
def load(self):
"""Loads settings from the YAML file."""
super().update(yaml_load(self.file))
def save(self):
"""Saves the current settings to the YAML file."""
yaml_save(self.file, dict(self))
def update(self, *args, **kwargs):
"""Updates a setting value in the current settings."""
super().update(*args, **kwargs)
self.save()
def reset(self):
"""Resets the settings to default and saves them."""
self.clear()
self.update(self.defaults)
self.save()

View File

@@ -0,0 +1,161 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import importlib.metadata
import platform
import random
import sys
import time
from lancedb.utils import CONFIG
from lancedb.utils.general import TryExcept
from .general import (
PLATFORMS,
get_git_origin_url,
is_git_dir,
is_github_actions_ci,
is_online,
is_pip_package,
is_pytest_running,
threaded_request,
)
class _Events:
"""
A class for collecting anonymous event analytics. Event analytics are enabled when ``diagnostics=True`` in config and
disabled when ``diagnostics=False``.
You can enable or disable diagnostics by running ``lancedb diagnostics --enabled`` or ``lancedb diagnostics --disabled``.
Attributes
----------
url : str
The URL to send anonymous events.
rate_limit : float
The rate limit in seconds for sending events.
metadata : dict
A dictionary containing metadata about the environment.
enabled : bool
A flag to enable or disable Events based on certain conditions.
"""
_instance = None
url = "https://app.posthog.com/capture/"
headers = {"Content-Type": "application/json"}
api_key = "phc_oENDjGgHtmIDrV6puUiFem2RB4JA8gGWulfdulmMdZP"
# This api-key is write only and is safe to expose in the codebase.
def __init__(self):
"""
Initializes the Events object with default values for events, rate_limit, and metadata.
"""
self.events = [] # events list
self.max_events = 25 # max events to store in memory
self.rate_limit = 60.0 # rate limit (seconds)
self.time = 0.0
if is_git_dir():
install = "git"
elif is_pip_package():
install = "pip"
else:
install = "other"
self.metadata = {
"cli": sys.argv[0],
"install": install,
"python": ".".join(platform.python_version_tuple()[:2]),
"version": importlib.metadata.version("lancedb"),
"platforms": PLATFORMS,
"session_id": round(random.random() * 1e15),
# 'engagement_time_msec': 1000 # TODO: In future we might be interested in this metric
}
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
ONLINE = is_online()
self.enabled = (
CONFIG["diagnostics"]
and not TESTS_RUNNING
and ONLINE
and (
is_pip_package()
or get_git_origin_url() == "https://github.com/lancedb/lancedb.git"
)
)
def __call__(self, event_name, params={}):
"""
Attempts to add a new event to the events list and send events if the rate limit is reached.
Args
----
event_name : str
The name of the event to be logged.
params : dict, optional
A dictionary of additional parameters to be logged with the event.
"""
### NOTE: We might need a way to tag a session with a label to check usage from a source. Setting label should be exposed to the user.
if not self.enabled:
return
if (
len(self.events) < self.max_events
): # Events list limited to 25 events (drop any events past this)
params.update(self.metadata)
self.events.append(
{
"event": event_name,
"properties": params,
"timestamp": datetime.datetime.now(
tz=datetime.timezone.utc
).isoformat(),
"distinct_id": CONFIG["uuid"],
}
)
# Check rate limit
t = time.time()
if (t - self.time) < self.rate_limit:
return
# Time is over rate limiter, send now
data = {
"api_key": self.api_key,
"distinct_id": CONFIG["uuid"], # posthog needs this to accepts the event
"batch": self.events,
}
# POST equivalent to requests.post(self.url, json=data).
# threaded request is used to avoid blocking, retries are disabled, and verbose is disabled
# to avoid any possible disruption in the console.
threaded_request(
method="post",
url=self.url,
headers=self.headers,
json=data,
retry=0,
verbose=False,
)
# Flush & Reset
self.events = []
self.time = t
@TryExcept(verbose=False)
def register_event(name: str, **kwargs):
if _Events._instance is None:
_Events._instance = _Events()
_Events._instance(name, **kwargs)

View File

@@ -0,0 +1,445 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import importlib
import logging.config
import os
import platform
import subprocess
import sys
import threading
import time
from pathlib import Path
from typing import Union
import requests
import yaml
LOGGING_NAME = "lancedb"
VERBOSE = (
str(os.getenv("LANCEDB_VERBOSE", True)).lower() == "true"
) # global verbose mode
def set_logging(name=LOGGING_NAME, verbose=True):
"""Sets up logging for the given name.
Parameters
----------
name : str, optional
The name of the logger. Default is 'lancedb'.
verbose : bool, optional
Whether to enable verbose logging. Default is True.
"""
rank = int(os.getenv("RANK", -1)) # rank in world for Multi-GPU trainings
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {name: {"format": "%(message)s"}},
"handlers": {
name: {
"class": "logging.StreamHandler",
"formatter": name,
"level": level,
}
},
"loggers": {name: {"level": level, "handlers": [name], "propagate": False}},
}
)
set_logging(LOGGING_NAME, verbose=VERBOSE)
LOGGER = logging.getLogger(LOGGING_NAME)
def is_pip_package(filepath: str = __name__) -> bool:
"""Determines if the file at the given filepath is part of a pip package.
Parameters
----------
filepath : str, optional
The filepath to check. Default is the current file.
Returns
-------
bool
True if the file is part of a pip package, False otherwise.
"""
# Get the spec for the module
spec = importlib.util.find_spec(filepath)
# Return whether the spec is not None and the origin is not None (indicating it is a package)
return spec is not None and spec.origin is not None
def is_pytest_running():
"""Determines whether pytest is currently running or not.
Returns
-------
bool
True if pytest is running, False otherwise.
"""
return (
("PYTEST_CURRENT_TEST" in os.environ)
or ("pytest" in sys.modules)
or ("pytest" in Path(sys.argv[0]).stem)
)
def is_github_actions_ci() -> bool:
"""
Determine if the current environment is a GitHub Actions CI Python runner.
Returns
-------
bool
True if the current environment is a GitHub Actions CI Python runner, False otherwise.
"""
return (
"GITHUB_ACTIONS" in os.environ
and "RUNNER_OS" in os.environ
and "RUNNER_TOOL_CACHE" in os.environ
)
def is_git_dir():
"""
Determines whether the current file is part of a git repository.
If the current file is not part of a git repository, returns None.
Returns
-------
bool
True if current file is part of a git repository.
"""
return get_git_dir() is not None
def is_online() -> bool:
"""
Check internet connectivity by attempting to connect to a known online host.
Returns
-------
bool
True if connection is successful, False otherwise.
"""
import socket
for host in "1.1.1.1", "8.8.8.8", "223.5.5.5": # Cloudflare, Google, AliDNS:
try:
test_connection = socket.create_connection(address=(host, 53), timeout=2)
except (socket.timeout, socket.gaierror, OSError):
continue
else:
# If the connection was successful, close it to avoid a ResourceWarning
test_connection.close()
return True
return False
def is_dir_writeable(dir_path: Union[str, Path]) -> bool:
"""Check if a directory is writeable.
Parameters
----------
dir_path : Union[str, Path]
The path to the directory.
Returns
-------
bool
True if the directory is writeable, False otherwise.
"""
return os.access(str(dir_path), os.W_OK)
def is_colab():
"""Check if the current script is running inside a Google Colab notebook.
Returns
-------
bool
True if running inside a Colab notebook, False otherwise.
"""
return "COLAB_RELEASE_TAG" in os.environ or "COLAB_BACKEND_VERSION" in os.environ
def is_kaggle():
"""Check if the current script is running inside a Kaggle kernel.
Returns
-------
bool
True if running inside a Kaggle kernel, False otherwise.
"""
return (
os.environ.get("PWD") == "/kaggle/working"
and os.environ.get("KAGGLE_URL_BASE") == "https://www.kaggle.com"
)
def is_jupyter():
"""Check if the current script is running inside a Jupyter Notebook.
Returns
-------
bool
True if running inside a Jupyter Notebook, False otherwise.
"""
with contextlib.suppress(Exception):
from IPython import get_ipython
return get_ipython() is not None
return False
def is_docker() -> bool:
"""Determine if the script is running inside a Docker container.
Returns
-------
bool
True if the script is running inside a Docker container, False otherwise.
"""
file = Path("/proc/self/cgroup")
if file.exists():
with open(file) as f:
return "docker" in f.read()
else:
return False
def get_git_dir():
"""Determine whether the current file is part of a git repository and if so, returns the repository root directory.
If the current file is not part of a git repository, returns None.
Returns
-------
Path | None
Git root directory if found or None if not found.
"""
for d in Path(__file__).parents:
if (d / ".git").is_dir():
return d
def get_git_origin_url():
"""Retrieve the origin URL of a git repository.
Returns
-------
str | None
The origin URL of the git repository or None if not git directory.
"""
if is_git_dir():
with contextlib.suppress(subprocess.CalledProcessError):
origin = subprocess.check_output(
["git", "config", "--get", "remote.origin.url"]
)
return origin.decode().strip()
def yaml_save(file="data.yaml", data=None, header=""):
"""Save YAML data to a file.
Parameters
----------
file : str, optional
File name, by default 'data.yaml'.
data : dict, optional
Data to save in YAML format, by default None.
header : str, optional
YAML header to add, by default "".
"""
if data is None:
data = {}
file = Path(file)
if not file.parent.exists():
# Create parent directories if they don't exist
file.parent.mkdir(parents=True, exist_ok=True)
# Convert Path objects to strings
for k, v in data.items():
if isinstance(v, Path):
data[k] = str(v)
# Dump data to file in YAML format
with open(file, "w", errors="ignore", encoding="utf-8") as f:
if header:
f.write(header)
yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True)
def yaml_load(file="data.yaml", append_filename=False):
"""
Load YAML data from a file.
Parameters
----------
file : str, optional
File name. Default is 'data.yaml'.
append_filename : bool, optional
Add the YAML filename to the YAML dictionary. Default is False.
Returns
-------
dict
YAML data and file name.
"""
assert Path(file).suffix in (
".yaml",
".yml",
), f"Attempting to load non-YAML file {file} with yaml_load()"
with open(file, errors="ignore", encoding="utf-8") as f:
s = f.read() # string
# Add YAML filename to dict and return
data = (
yaml.safe_load(s) or {}
) # always return a dict (yaml.safe_load() may return None for empty files)
if append_filename:
data["yaml_file"] = str(file)
return data
def yaml_print(yaml_file: Union[str, Path, dict]) -> None:
"""
Pretty prints a YAML file or a YAML-formatted dictionary.
Parameters
----------
yaml_file : Union[str, Path, dict]
The file path of the YAML file or a YAML-formatted dictionary.
Returns
-------
None
"""
yaml_dict = (
yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file
)
dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True)
LOGGER.info(f"Printing '{yaml_file}'\n\n{dump}")
PLATFORMS = [platform.system()]
if is_colab():
PLATFORMS.append("Colab")
if is_kaggle():
PLATFORMS.append("Kaggle")
if is_jupyter():
PLATFORMS.append("Jupyter")
if is_docker():
PLATFORMS.append("Docker")
PLATFORMS = "|".join(PLATFORMS)
class TryExcept(contextlib.ContextDecorator):
"""
TryExcept context manager.
Usage: @TryExcept() decorator or 'with TryExcept():' context manager.
"""
def __init__(self, msg="", verbose=True):
"""
Parameters
----------
msg : str, optional
Custom message to display in case of exception, by default "".
verbose : bool, optional
Whether to display the message, by default True.
"""
self.msg = msg
self.verbose = verbose
def __enter__(self):
pass
def __exit__(self, exc_type, value, traceback):
if self.verbose and value:
LOGGER.info(f"{self.msg}{': ' if self.msg else ''}{value}")
return True
def threaded_request(
method, url, retry=3, timeout=30, thread=True, code=-1, verbose=True, **kwargs
):
"""
Makes an HTTP request using the 'requests' library, with exponential backoff retries up to a specified timeout.
Parameters
----------
method : str
The HTTP method to use for the request. Choices are 'post' and 'get'.
url : str
The URL to make the request to.
retry : int, optional
Number of retries to attempt before giving up, by default 3.
timeout : int, optional
Timeout in seconds after which the function will give up retrying, by default 30.
thread : bool, optional
Whether to execute the request in a separate daemon thread, by default True.
code : int, optional
An identifier for the request, used for logging purposes, by default -1.
verbose : bool, optional
A flag to determine whether to print out to console or not, by default True.
Returns
-------
requests.Response
The HTTP response object. If the request is executed in a separate thread, returns the thread itself.
"""
retry_codes = () # retry only these codes TODO: add codes if needed in future (500, 408)
@TryExcept(verbose=verbose)
def func(method, url, **kwargs):
"""Make HTTP requests with retries and timeouts, with optional progress tracking."""
response = None
t0 = time.time()
for i in range(retry + 1):
if (time.time() - t0) > timeout:
break
response = requests.request(method, url, **kwargs)
if response.status_code < 300: # good return codes in the 2xx range
break
try:
m = response.json().get("message", "No JSON message.")
except AttributeError:
m = "Unable to read JSON."
if i == 0:
if response.status_code in retry_codes:
m += f" Retrying {retry}x for {timeout}s." if retry else ""
elif response.status_code == 429: # rate limit
m = f"Rate limit reached"
if verbose:
LOGGER.warning(f"{response.status_code} #{code}")
if response.status_code not in retry_codes:
return response
time.sleep(2**i) # exponential standoff
return response
args = method, url
if thread:
return threading.Thread(
target=func, args=args, kwargs=kwargs, daemon=True
).start()
else:
return func(*args, **kwargs)

View File

@@ -0,0 +1,112 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import bdb
import importlib.metadata
import logging
import sys
from pathlib import Path
from lancedb.utils import CONFIG
from .general import (
PLATFORMS,
TryExcept,
is_git_dir,
is_github_actions_ci,
is_online,
is_pip_package,
is_pytest_running,
)
@TryExcept(verbose=False)
def set_sentry():
"""
Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and
sync=True in settings. Run 'lancedb settings' to see and update settings YAML file.
Conditions required to send errors (ALL conditions must be met or no errors will be reported):
- sentry_sdk package is installed
- sync=True in settings
- pytest is not running
- running in a pip package installation
- running in a non-git directory
- online environment
The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError
exceptions for now.
Additionally, the function sets custom tags and user information for Sentry events.
"""
def before_send(event, hint):
"""
Modify the event before sending it to Sentry based on specific exception types and messages.
Args:
event (dict): The event dictionary containing information about the error.
hint (dict): A dictionary containing additional information about the error.
Returns:
dict: The modified event or None if the event should not be sent to Sentry.
"""
if "exc_info" in hint:
exc_type, exc_value, tb = hint["exc_info"]
if "out of memory" in str(exc_value).lower():
return None
if is_git_dir():
install = "git"
elif is_pip_package():
install = "pip"
else:
install = "other"
event["tags"] = {
"sys_argv": sys.argv[0],
"sys_argv_name": Path(sys.argv[0]).name,
"install": install,
"platforms": PLATFORMS,
"version": importlib.metadata.version("lancedb"),
}
return event
TESTS_RUNNING = is_pytest_running() or is_github_actions_ci()
ONLINE = is_online()
if CONFIG["diagnostics"] and not TESTS_RUNNING and ONLINE and is_pip_package():
# and not is_git_dir(): # not running inside a git dir. Maybe too restrictive?
# If sentry_sdk package is not installed then return and do not use Sentry
try:
import sentry_sdk # noqa
except ImportError:
return
sentry_sdk.init(
dsn="https://c63ef8c64e05d1aa1a96513361f3ca2f@o4505950840946688.ingest.sentry.io/4505950933614592",
debug=False,
include_local_variables=False,
traces_sample_rate=1.0,
environment="production", # 'dev' or 'production'
before_send=before_send,
ignore_errors=[KeyboardInterrupt, FileNotFoundError, bdb.BdbQuit],
)
sentry_sdk.set_user({"id": CONFIG["uuid"]}) # SHA-256 anonymized UUID hash
# Disable all sentry logging
for logger in "sentry_sdk", "sentry_sdk.errors":
logging.getLogger(logger).setLevel(logging.CRITICAL)
set_sentry()

View File

@@ -1,16 +1,20 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.2.4" version = "0.3.1"
dependencies = [ dependencies = [
"pylance==0.7.4", "deprecation",
"ratelimiter", "pylance==0.8.3",
"retry", "ratelimiter~=1.0",
"tqdm", "retry>=0.9.2",
"tqdm>=4.1.0",
"aiohttp", "aiohttp",
"pydantic", "pydantic>=1.10",
"attr", "attrs>=21.3.0",
"semver>=3.0", "semver>=3.0",
"cachetools" "cachetools",
"pyyaml>=6.0",
"click>=8.1.7",
"requests>=2.31.0"
] ]
description = "lancedb" description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }] authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
@@ -44,9 +48,14 @@ classifiers = [
repository = "https://github.com/lancedb/lancedb" repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio"] tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio", "requests"]
dev = ["ruff", "pre-commit", "black"] dev = ["ruff", "pre-commit", "black"]
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"] docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
clip = ["torch", "pillow", "open-clip"]
embeddings = ["openai", "sentence-transformers", "torch", "pillow", "open-clip", "cohere"]
[project.scripts]
lancedb = "lancedb.cli.cli:cli"
[build-system] [build-system]
requires = ["setuptools", "wheel"] requires = ["setuptools", "wheel"]
@@ -54,3 +63,10 @@ build-backend = "setuptools.build_meta"
[tool.isort] [tool.isort]
profile = "black" profile = "black"
[tool.pytest.ini_options]
addopts = "--strict-markers"
markers = [
"slow: marks tests as slow (deselect with '-m \"not slow\"')",
"asyncio"
]

35
python/tests/test_cli.py Normal file
View File

@@ -0,0 +1,35 @@
from click.testing import CliRunner
from lancedb.cli.cli import cli
from lancedb.utils import CONFIG
def test_entry():
runner = CliRunner()
result = runner.invoke(cli)
assert result.exit_code == 0 # Main check
assert "lancedb" in result.output.lower() # lazy check
def test_diagnostics():
runner = CliRunner()
result = runner.invoke(cli, ["diagnostics", "--disabled"])
assert result.exit_code == 0 # Main check
assert CONFIG["diagnostics"] == False
result = runner.invoke(cli, ["diagnostics", "--enabled"])
assert result.exit_code == 0 # Main check
assert CONFIG["diagnostics"] == True
def test_config():
runner = CliRunner()
result = runner.invoke(cli, ["config"])
assert result.exit_code == 0 # Main check
cfg = CONFIG.copy()
cfg.pop("uuid")
for (
item,
_,
) in cfg.items(): # check for keys only as formatting is subject to change
assert item in result.output

View File

@@ -47,7 +47,7 @@ def test_contextualizer(raw_df: pd.DataFrame):
.stride(3) .stride(3)
.text_col("token") .text_col("token")
.groupby("document_id") .groupby("document_id")
.to_df()["token"] .to_pandas()["token"]
.to_list() .to_list()
) )
@@ -67,7 +67,7 @@ def test_contextualizer_with_threshold(raw_df: pd.DataFrame):
.text_col("token") .text_col("token")
.groupby("document_id") .groupby("document_id")
.min_window_size(4) .min_window_size(4)
.to_df()["token"] .to_pandas()["token"]
.to_list() .to_list()
) )

View File

@@ -33,11 +33,11 @@ def test_basic(tmp_path):
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}, {"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
], ],
) )
rs = table.search([100, 100]).limit(1).to_df() rs = table.search([100, 100]).limit(1).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "bar" assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df() rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "foo" assert rs["item"].iloc[0] == "foo"
@@ -62,11 +62,11 @@ def test_ingest_pd(tmp_path):
} }
) )
table = db.create_table("test", data=data) table = db.create_table("test", data=data)
rs = table.search([100, 100]).limit(1).to_df() rs = table.search([100, 100]).limit(1).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "bar" assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df() rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "foo" assert rs["item"].iloc[0] == "foo"
@@ -136,11 +136,9 @@ def test_ingest_iterator(tmp_path):
def run_tests(schema): def run_tests(schema):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)
tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite") tbl = db.create_table("table2", make_batches(), schema=schema, mode="overwrite")
tbl.to_pandas() tbl.to_pandas()
assert tbl.search([3.1, 4.1]).limit(1).to_df()["_distance"][0] == 0.0 assert tbl.search([3.1, 4.1]).limit(1).to_pandas()["_distance"][0] == 0.0
assert tbl.search([5.9, 26.5]).limit(1).to_df()["_distance"][0] == 0.0 assert tbl.search([5.9, 26.5]).limit(1).to_pandas()["_distance"][0] == 0.0
tbl_len = len(tbl) tbl_len = len(tbl)
tbl.add(make_batches()) tbl.add(make_batches())
assert tbl_len == 50 assert tbl_len == 50

View File

@@ -23,5 +23,5 @@ from lancedb import LanceDBConnection
def test_against_local_server(): def test_against_local_server():
conn = LanceDBConnection("lancedb+http://localhost:10024") conn = LanceDBConnection("lancedb+http://localhost:10024")
table = conn.open_table("sift1m_ivf1024_pq16") table = conn.open_table("sift1m_ivf1024_pq16")
df = table.search(np.random.rand(128)).to_df() df = table.search(np.random.rand(128)).to_pandas()
assert len(df) == 10 assert len(df) == 10

View File

@@ -16,8 +16,12 @@ import lance
import numpy as np import numpy as np
import pyarrow as pa import pyarrow as pa
from lancedb.conftest import MockEmbeddingFunction from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.embeddings import EmbeddingFunctionRegistry, with_embeddings from lancedb.embeddings import (
EmbeddingFunctionConfig,
EmbeddingFunctionRegistry,
with_embeddings,
)
def mock_embed_func(input_data): def mock_embed_func(input_data):
@@ -54,8 +58,12 @@ def test_embedding_function(tmp_path):
"vector": [np.random.randn(10), np.random.randn(10)], "vector": [np.random.randn(10), np.random.randn(10)],
} }
) )
func = MockEmbeddingFunction(source_column="text", vector_column="vector") conf = EmbeddingFunctionConfig(
metadata = registry.get_table_metadata([func]) source_column="text",
vector_column="vector",
function=MockTextEmbeddingFunction(),
)
metadata = registry.get_table_metadata([conf])
table = table.replace_schema_metadata(metadata) table = table.replace_schema_metadata(metadata)
# Write it to disk # Write it to disk
@@ -65,14 +73,13 @@ def test_embedding_function(tmp_path):
ds = lance.dataset(tmp_path / "test.lance") ds = lance.dataset(tmp_path / "test.lance")
# can we get the serialized version back out? # can we get the serialized version back out?
functions = registry.parse_functions(ds.schema.metadata) configs = registry.parse_functions(ds.schema.metadata)
func = functions["vector"] conf = configs["vector"]
actual = func("hello world") func = conf.function
actual = func.compute_query_embeddings("hello world")
# We create an instance
expected_func = MockEmbeddingFunction(source_column="text", vector_column="vector")
# And we make sure we can call it # And we make sure we can call it
expected = expected_func("hello world") expected = func.compute_query_embeddings("hello world")
assert np.allclose(actual, expected) assert np.allclose(actual, expected)

View File

@@ -0,0 +1,149 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
import numpy as np
import pandas as pd
import pytest
import requests
import lancedb
from lancedb.embeddings import EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector
# These are integration tests for embedding functions.
# They are slow because they require downloading models
# or connection to external api
@pytest.mark.slow
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai"])
def test_sentence_transformer(alias, tmp_path):
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get(alias).create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add(
pd.DataFrame(
{
"text": [
"hello world",
"goodbye world",
"fizz",
"buzz",
"foo",
"bar",
"baz",
]
}
)
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
vec = func.compute_query_embeddings(query)[0]
expected = table.search(vec).limit(1).to_pydantic(Words)[0]
assert actual.text == expected.text
assert actual.text == "hello world"
@pytest.mark.slow
def test_openclip(tmp_path):
from PIL import Image
db = lancedb.connect(tmp_path)
registry = EmbeddingFunctionRegistry.get_instance()
func = registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField()
image_bytes: bytes = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
vec_from_bytes: Vector(func.ndims()) = func.VectorField()
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == frombytes.label
assert np.allclose(actual.vector, frombytes.vector)
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
assert actual.label == "dog"
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
assert actual.label == other.label
arrow_table = table.search().select(["vector", "vec_from_bytes"]).to_arrow()
assert np.allclose(
arrow_table["vector"].combine_chunks().values.to_numpy(),
arrow_table["vec_from_bytes"].combine_chunks().values.to_numpy(),
)
@pytest.mark.slow
@pytest.mark.skipif(
os.environ.get("COHERE_API_KEY") is None, reason="COHERE_API_KEY not set"
) # also skip if cohere not installed
def test_cohere_embedding_function():
cohere = (
EmbeddingFunctionRegistry.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
)
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
assert len(tbl.to_pandas()["vector"][0]) == cohere.ndims()

View File

@@ -71,14 +71,14 @@ def test_search_index(tmp_path, table):
def test_create_index_from_table(tmp_path, table): def test_create_index_from_table(tmp_path, table):
table.create_fts_index("text") table.create_fts_index("text")
df = table.search("puppy").limit(10).select(["text"]).to_df() df = table.search("puppy").limit(10).select(["text"]).to_pandas()
assert len(df) == 10 assert len(df) == 10
assert "text" in df.columns assert "text" in df.columns
def test_create_index_multiple_columns(tmp_path, table): def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"]) table.create_fts_index(["text", "text2"])
df = table.search("puppy").limit(10).to_df() df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 10 assert len(df) == 10
assert "text" in df.columns assert "text" in df.columns
assert "text2" in df.columns assert "text2" in df.columns
@@ -87,5 +87,5 @@ def test_create_index_multiple_columns(tmp_path, table):
def test_empty_rs(tmp_path, table, mocker): def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"]) table.create_fts_index(["text", "text2"])
mocker.patch("lancedb.fts.search_index", return_value=([], [])) mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_df() df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 0 assert len(df) == 0

View File

@@ -36,11 +36,11 @@ def test_s3_io():
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}, {"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
], ],
) )
rs = table.search([100, 100]).limit(1).to_df() rs = table.search([100, 100]).limit(1).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "bar" assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df() rs = table.search([100, 100]).where("price < 15").limit(2).to_pandas()
assert len(rs) == 1 assert len(rs) == 1
assert rs["item"].iloc[0] == "foo" assert rs["item"].iloc[0] == "foo"

View File

@@ -38,6 +38,7 @@ class MockTable:
return ds.to_table( return ds.to_table(
columns=query.columns, columns=query.columns,
filter=query.filter, filter=query.filter,
prefilter=query.prefilter,
nearest={ nearest={
"column": query.vector_column, "column": query.vector_column,
"q": query.vector, "q": query.vector,
@@ -84,15 +85,37 @@ def test_cast(table):
def test_query_builder(table): def test_query_builder(table):
df = ( rs = (
LanceVectorQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df() LanceVectorQueryBuilder(table, [0, 0], "vector")
.limit(1)
.select(["id"])
.to_list()
) )
assert df["id"].values[0] == 1 assert rs[0]["id"] == 1
assert all(df["vector"].values[0] == [1, 2]) assert all(np.array(rs[0]["vector"]) == [1, 2])
def test_query_builder_with_filter(table): def test_query_builder_with_filter(table):
df = LanceVectorQueryBuilder(table, [0, 0], "vector").where("id = 2").to_df() rs = LanceVectorQueryBuilder(table, [0, 0], "vector").where("id = 2").to_list()
assert rs[0]["id"] == 2
assert all(np.array(rs[0]["vector"]) == [3, 4])
def test_query_builder_with_prefilter(table):
df = (
LanceVectorQueryBuilder(table, [0, 0], "vector")
.where("id = 2")
.limit(1)
.to_pandas()
)
assert len(df) == 0
df = (
LanceVectorQueryBuilder(table, [0, 0], "vector")
.where("id = 2", prefilter=True)
.limit(1)
.to_pandas()
)
assert df["id"].values[0] == 2 assert df["id"].values[0] == 2
assert all(df["vector"].values[0] == [3, 4]) assert all(df["vector"].values[0] == [3, 4])
@@ -100,9 +123,11 @@ def test_query_builder_with_filter(table):
def test_query_builder_with_metric(table): def test_query_builder_with_metric(table):
query = [4, 8] query = [4, 8]
vector_column_name = "vector" vector_column_name = "vector"
df_default = LanceVectorQueryBuilder(table, query, vector_column_name).to_df() df_default = LanceVectorQueryBuilder(table, query, vector_column_name).to_pandas()
df_l2 = ( df_l2 = (
LanceVectorQueryBuilder(table, query, vector_column_name).metric("L2").to_df() LanceVectorQueryBuilder(table, query, vector_column_name)
.metric("L2")
.to_pandas()
) )
tm.assert_frame_equal(df_default, df_l2) tm.assert_frame_equal(df_default, df_l2)
@@ -110,7 +135,7 @@ def test_query_builder_with_metric(table):
LanceVectorQueryBuilder(table, query, vector_column_name) LanceVectorQueryBuilder(table, query, vector_column_name)
.metric("cosine") .metric("cosine")
.limit(1) .limit(1)
.to_df() .to_pandas()
) )
assert df_cosine._distance[0] == pytest.approx( assert df_cosine._distance[0] == pytest.approx(
cosine_distance(query, df_cosine.vector[0]), cosine_distance(query, df_cosine.vector[0]),

View File

@@ -11,7 +11,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import attr import attrs
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
@@ -21,10 +21,10 @@ from aiohttp import web
from lancedb.remote.client import RestfulLanceDBClient, VectorQuery from lancedb.remote.client import RestfulLanceDBClient, VectorQuery
@attr.define @attrs.define
class MockLanceDBServer: class MockLanceDBServer:
runner: web.AppRunner = attr.field(init=False) runner: web.AppRunner = attrs.field(init=False)
site: web.TCPSite = attr.field(init=False) site: web.TCPSite = attrs.field(init=False)
async def query_handler(self, request: web.Request) -> web.Response: async def query_handler(self, request: web.Request) -> web.Response:
table_name = request.match_info["table_name"] table_name = request.match_info["table_name"]
@@ -86,7 +86,7 @@ async def test_e2e_with_mock_server():
columns=["id", "vector"], columns=["id", "vector"],
), ),
) )
).to_df() ).to_pandas()
assert "vector" in df.columns assert "vector" in df.columns
assert "id" in df.columns assert "id" in df.columns

View File

@@ -32,4 +32,4 @@ def test_remote_db():
setattr(conn, "_client", FakeLanceDBClient()) setattr(conn, "_client", FakeLanceDBClient())
table = conn["test"] table = conn["test"]
table.search([1.0, 2.0]).to_df() table.search([1.0, 2.0]).to_pandas()

View File

@@ -12,6 +12,7 @@
# limitations under the License. # limitations under the License.
import functools import functools
from datetime import timedelta
from pathlib import Path from pathlib import Path
from typing import List from typing import List
from unittest.mock import PropertyMock, patch from unittest.mock import PropertyMock, patch
@@ -22,8 +23,9 @@ import pandas as pd
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from lancedb.conftest import MockEmbeddingFunction from lancedb.conftest import MockTextEmbeddingFunction
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector
from lancedb.table import LanceTable from lancedb.table import LanceTable
@@ -222,6 +224,7 @@ def test_create_index_method():
num_partitions=256, num_partitions=256,
num_sub_vectors=96, num_sub_vectors=96,
replace=True, replace=True,
accelerator=None,
) )
@@ -356,20 +359,23 @@ def test_create_with_embedding_function(db):
text: str text: str
vector: Vector(10) vector: Vector(10)
func = MockEmbeddingFunction(source_column="text", vector_column="vector") func = MockTextEmbeddingFunction()
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"] texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts, "vector": func(texts)}) df = pd.DataFrame({"text": texts, "vector": func.compute_source_embeddings(texts)})
conf = EmbeddingFunctionConfig(
source_column="text", vector_column="vector", function=func
)
table = LanceTable.create( table = LanceTable.create(
db, db,
"my_table", "my_table",
schema=MyTable, schema=MyTable,
embedding_functions=[func], embedding_functions=[conf],
) )
table.add(df) table.add(df)
query_str = "hi how are you?" query_str = "hi how are you?"
query_vector = func(query_str)[0] query_vector = func.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow() expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow() actual = table.search(query_str).limit(2).to_arrow()
@@ -377,17 +383,13 @@ def test_create_with_embedding_function(db):
def test_add_with_embedding_function(db): def test_add_with_embedding_function(db):
class MyTable(LanceModel): emb = EmbeddingFunctionRegistry.get_instance().get("test")()
text: str
vector: Vector(10)
func = MockEmbeddingFunction(source_column="text", vector_column="vector") class MyTable(LanceModel):
table = LanceTable.create( text: str = emb.SourceField()
db, vector: Vector(emb.ndims()) = emb.VectorField()
"my_table",
schema=MyTable, table = LanceTable.create(db, "my_table", schema=MyTable)
embedding_functions=[func],
)
texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"] texts = ["hello world", "goodbye world", "foo bar baz fizz buzz"]
df = pd.DataFrame({"text": texts}) df = pd.DataFrame({"text": texts})
@@ -397,7 +399,7 @@ def test_add_with_embedding_function(db):
table.add([{"text": t} for t in texts]) table.add([{"text": t} for t in texts])
query_str = "hi how are you?" query_str = "hi how are you?"
query_vector = func(query_str)[0] query_vector = emb.compute_query_embeddings(query_str)[0]
expected = table.search(query_vector).limit(2).to_arrow() expected = table.search(query_vector).limit(2).to_arrow()
actual = table.search(query_str).limit(2).to_arrow() actual = table.search(query_str).limit(2).to_arrow()
@@ -426,8 +428,8 @@ def test_multiple_vector_columns(db):
table.add(df) table.add(df)
q = np.random.randn(10) q = np.random.randn(10)
result1 = table.search(q, vector_column_name="vector1").limit(1).to_df() result1 = table.search(q, vector_column_name="vector1").limit(1).to_pandas()
result2 = table.search(q, vector_column_name="vector2").limit(1).to_df() result2 = table.search(q, vector_column_name="vector2").limit(1).to_pandas()
assert result1["text"].iloc[0] != result2["text"].iloc[0] assert result1["text"].iloc[0] != result2["text"].iloc[0]
@@ -438,6 +440,34 @@ def test_empty_query(db):
"my_table", "my_table",
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}], data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
) )
df = table.search().select(["id"]).where("text='bar'").limit(1).to_df() df = table.search().select(["id"]).where("text='bar'").limit(1).to_pandas()
val = df.id.iloc[0] val = df.id.iloc[0]
assert val == 1 assert val == 1
def test_compact_cleanup(db):
table = LanceTable.create(
db,
"my_table",
data=[{"text": "foo", "id": 0}, {"text": "bar", "id": 1}],
)
table.add([{"text": "baz", "id": 2}])
assert len(table) == 3
assert table.version == 3
stats = table.compact_files()
assert len(table) == 3
assert table.version == 4
assert stats.fragments_removed > 0
assert stats.fragments_added == 1
stats = table.cleanup_old_versions()
assert stats.bytes_removed == 0
stats = table.cleanup_old_versions(older_than=timedelta(0), delete_unverified=True)
assert stats.bytes_removed > 0
assert table.version == 4
with pytest.raises(Exception, match="Version 3 no longer exists"):
table.checkout(3)

View File

@@ -0,0 +1,60 @@
import json
import pytest
import lancedb
from lancedb.utils.events import _Events
@pytest.fixture(autouse=True)
def request_log_path(tmp_path):
return tmp_path / "request.json"
def mock_register_event(name: str, **kwargs):
if _Events._instance is None:
_Events._instance = _Events()
_Events._instance.enabled = True
_Events._instance.rate_limit = 0
_Events._instance(name, **kwargs)
def test_event_reporting(monkeypatch, request_log_path, tmp_path) -> None:
def mock_request(**kwargs):
json_data = kwargs.get("json", {})
with open(request_log_path, "w") as f:
json.dump(json_data, f)
monkeypatch.setattr(
lancedb.table, "register_event", mock_register_event
) # Force enable registering events and strip exception handling
monkeypatch.setattr(lancedb.utils.events, "threaded_request", mock_request)
db = lancedb.connect(tmp_path)
db.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
],
mode="overwrite",
)
assert request_log_path.exists() # test if event was registered
with open(request_log_path, "r") as f:
json_data = json.load(f)
# TODO: don't hardcode these here. Instead create a module level json scehma in lancedb.utils.events for better evolvability
batch_keys = ["api_key", "distinct_id", "batch"]
event_keys = ["event", "properties", "timestamp", "distinct_id"]
property_keys = ["cli", "install", "platforms", "version", "session_id"]
assert all([key in json_data for key in batch_keys])
assert all([key in json_data["batch"][0] for key in event_keys])
assert all([key in json_data["batch"][0]["properties"] for key in property_keys])
# cleanup & reset
monkeypatch.undo()
_Events._instance = None

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.2.5" version = "0.3.1"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"
@@ -13,6 +13,7 @@ crate-type = ["cdylib"]
arrow-array = { workspace = true } arrow-array = { workspace = true }
arrow-ipc = { workspace = true } arrow-ipc = { workspace = true }
arrow-schema = { workspace = true } arrow-schema = { workspace = true }
chrono = { workspace = true }
conv = "0.3.3" conv = "0.3.3"
once_cell = "1" once_cell = "1"
futures = "0.3" futures = "0.3"

View File

@@ -12,8 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use lance::index::vector::ivf::IvfBuildParams; use lance::index::vector::{ivf::IvfBuildParams, pq::PQBuildParams};
use lance::index::vector::pq::PQBuildParams;
use lance_linalg::distance::MetricType; use lance_linalg::distance::MetricType;
use neon::context::FunctionContext; use neon::context::FunctionContext;
use neon::prelude::*; use neon::prelude::*;
@@ -82,7 +81,7 @@ fn get_index_params_builder(
let ivf_params = IvfBuildParams { let ivf_params = IvfBuildParams {
num_partitions: np, num_partitions: np,
max_iters, max_iters,
centroids: None, ..Default::default()
}; };
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });

View File

@@ -195,7 +195,7 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let (deferred, promise) = cx.promise(); let (deferred, promise) = cx.promise();
rt.spawn(async move { rt.spawn(async move {
let table_rst = database.open_table_with_params(&table_name, &params).await; let table_rst = database.open_table_with_params(&table_name, params).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let js_table = JsTable::from(table_rst.or_throw(&mut cx)?); let js_table = JsTable::from(table_rst.or_throw(&mut cx)?);
@@ -237,6 +237,8 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableAdd", JsTable::js_add)?; cx.export_function("tableAdd", JsTable::js_add)?;
cx.export_function("tableCountRows", JsTable::js_count_rows)?; cx.export_function("tableCountRows", JsTable::js_count_rows)?;
cx.export_function("tableDelete", JsTable::js_delete)?; cx.export_function("tableDelete", JsTable::js_delete)?;
cx.export_function("tableCleanupOldVersions", JsTable::js_cleanup)?;
cx.export_function("tableCompactFiles", JsTable::js_compact)?;
cx.export_function( cx.export_function(
"tableCreateVectorIndex", "tableCreateVectorIndex",
index::vector::table_create_vector_index, index::vector::table_create_vector_index,

View File

@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
use arrow_array::RecordBatchIterator; use arrow_array::RecordBatchIterator;
use lance::dataset::optimize::CompactionOptions;
use lance::dataset::{WriteMode, WriteParams}; use lance::dataset::{WriteMode, WriteParams};
use lance::io::object_store::ObjectStoreParams; use lance::io::object_store::ObjectStoreParams;
@@ -163,4 +164,116 @@ impl JsTable {
}); });
Ok(promise) Ok(promise)
} }
pub(crate) fn js_cleanup(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
let channel = cx.channel();
let older_than: i64 = cx
.argument_opt(0)
.and_then(|val| val.downcast::<JsNumber, _>(&mut cx).ok())
.map(|val| val.value(&mut cx) as i64)
.unwrap_or_else(|| 2 * 7 * 24 * 60); // 2 weeks
let older_than = chrono::Duration::minutes(older_than);
let delete_unverified: bool = cx
.argument_opt(1)
.and_then(|val| val.downcast::<JsBoolean, _>(&mut cx).ok())
.map(|val| val.value(&mut cx))
.unwrap_or_default();
rt.spawn(async move {
let stats = table
.cleanup_old_versions(older_than, Some(delete_unverified))
.await;
deferred.settle_with(&channel, move |mut cx| {
let stats = stats.or_throw(&mut cx)?;
let output_metrics = JsObject::new(&mut cx);
let bytes_removed = cx.number(stats.bytes_removed as f64);
output_metrics.set(&mut cx, "bytesRemoved", bytes_removed)?;
let old_versions = cx.number(stats.old_versions as f64);
output_metrics.set(&mut cx, "oldVersions", old_versions)?;
let output_table = cx.boxed(JsTable::from(table));
let output = JsObject::new(&mut cx);
output.set(&mut cx, "metrics", output_metrics)?;
output.set(&mut cx, "newTable", output_table)?;
Ok(output)
})
});
Ok(promise)
}
pub(crate) fn js_compact(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let (deferred, promise) = cx.promise();
let mut table = js_table.table.clone();
let channel = cx.channel();
let js_options = cx.argument::<JsObject>(0)?;
let mut options = CompactionOptions::default();
if let Some(target_rows) =
js_options.get_opt::<JsNumber, _, _>(&mut cx, "targetRowsPerFragment")?
{
options.target_rows_per_fragment = target_rows.value(&mut cx) as usize;
}
if let Some(max_per_group) =
js_options.get_opt::<JsNumber, _, _>(&mut cx, "maxRowsPerGroup")?
{
options.max_rows_per_group = max_per_group.value(&mut cx) as usize;
}
if let Some(materialize_deletions) =
js_options.get_opt::<JsBoolean, _, _>(&mut cx, "materializeDeletions")?
{
options.materialize_deletions = materialize_deletions.value(&mut cx);
}
if let Some(materialize_deletions_threshold) =
js_options.get_opt::<JsNumber, _, _>(&mut cx, "materializeDeletionsThreshold")?
{
options.materialize_deletions_threshold =
materialize_deletions_threshold.value(&mut cx) as f32;
}
if let Some(num_threads) = js_options.get_opt::<JsNumber, _, _>(&mut cx, "numThreads")? {
options.num_threads = num_threads.value(&mut cx) as usize;
}
rt.spawn(async move {
let stats = table.compact_files(options).await;
deferred.settle_with(&channel, move |mut cx| {
let stats = stats.or_throw(&mut cx)?;
let output_metrics = JsObject::new(&mut cx);
let fragments_removed = cx.number(stats.fragments_removed as f64);
output_metrics.set(&mut cx, "fragmentsRemoved", fragments_removed)?;
let fragments_added = cx.number(stats.fragments_added as f64);
output_metrics.set(&mut cx, "fragmentsAdded", fragments_added)?;
let files_removed = cx.number(stats.files_removed as f64);
output_metrics.set(&mut cx, "filesRemoved", files_removed)?;
let files_added = cx.number(stats.files_added as f64);
output_metrics.set(&mut cx, "filesAdded", files_added)?;
let output_table = cx.boxed(JsTable::from(table));
let output = JsObject::new(&mut cx);
output.set(&mut cx, "metrics", output_metrics)?;
output.set(&mut cx, "newTable", output_table)?;
Ok(output)
})
});
Ok(promise)
}
} }

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.2.5" version = "0.3.1"
edition = "2021" edition = "2021"
description = "LanceDB: A serverless, low-latency vector database for AI applications" description = "LanceDB: A serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
@@ -16,16 +16,22 @@ arrow-data = { workspace = true }
arrow-schema = { workspace = true } arrow-schema = { workspace = true }
arrow-ord = { workspace = true } arrow-ord = { workspace = true }
arrow-cast = { workspace = true } arrow-cast = { workspace = true }
chrono = { workspace = true }
object_store = { workspace = true } object_store = { workspace = true }
snafu = { workspace = true } snafu = { workspace = true }
half = { workspace = true } half = { workspace = true }
lance = { workspace = true } lance = { workspace = true }
lance-linalg = { workspace = true } lance-linalg = { workspace = true }
lance-testing = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }
log = { workspace = true } log = { workspace = true }
async-trait = "0"
bytes = "1"
futures = "0"
num-traits = "0" num-traits = "0"
url = { workspace = true } url = { workspace = true }
[dev-dependencies] [dev-dependencies]
tempfile = "3.5.0" tempfile = "3.5.0"
rand = { version = "0.8.3", features = ["small_rng"] } rand = { version = "0.8.3", features = ["small_rng"] }
walkdir = "2"

View File

@@ -14,13 +14,16 @@
use std::fs::create_dir_all; use std::fs::create_dir_all;
use std::path::Path; use std::path::Path;
use std::sync::Arc;
use arrow_array::RecordBatchReader; use arrow_array::RecordBatchReader;
use lance::dataset::WriteParams; use lance::dataset::WriteParams;
use lance::io::object_store::ObjectStore; use lance::io::object_store::{ObjectStore, WrappingObjectStore};
use object_store::local::LocalFileSystem;
use snafu::prelude::*; use snafu::prelude::*;
use crate::error::{CreateDirSnafu, Error, InvalidTableNameSnafu, Result}; use crate::error::{CreateDirSnafu, Error, InvalidTableNameSnafu, Result};
use crate::io::object_store::MirroringObjectStoreWrapper;
use crate::table::{ReadParams, Table}; use crate::table::{ReadParams, Table};
pub const LANCE_FILE_EXTENSION: &str = "lance"; pub const LANCE_FILE_EXTENSION: &str = "lance";
@@ -31,21 +34,14 @@ pub struct Database {
pub(crate) uri: String, pub(crate) uri: String,
pub(crate) base_path: object_store::path::Path, pub(crate) base_path: object_store::path::Path,
// the object store wrapper to use on write path
pub(crate) store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
} }
const LANCE_EXTENSION: &str = "lance"; const LANCE_EXTENSION: &str = "lance";
const ENGINE: &str = "engine"; const ENGINE: &str = "engine";
const MIRRORED_STORE: &str = "mirroredStore";
/// Parse a url, if it's not a valid url, assume it's a local file
/// and try to parse with file:// appended
fn parse_url(url: &str) -> Result<url::Url> {
match url::Url::parse(url) {
Ok(url) => Ok(url),
Err(_) => url::Url::parse(format!("file://{}", url).as_str()).map_err(|e| Error::Lance {
message: format!("Failed to parse uri: {}", e),
}),
}
}
/// A connection to LanceDB /// A connection to LanceDB
impl Database { impl Database {
@@ -59,27 +55,14 @@ impl Database {
/// ///
/// * A [Database] object. /// * A [Database] object.
pub async fn connect(uri: &str) -> Result<Database> { pub async fn connect(uri: &str) -> Result<Database> {
// For a native (using lance directly) connection let parse_res = url::Url::parse(uri);
// The DB doesn't use any uri parameters, but lance does
// So we need to parse the uri, extract the query string, and progate it to lance
let mut url = parse_url(uri)?;
// special handling for windows
if url.scheme().len() == 1 && cfg!(windows) {
let (object_store, base_path) = ObjectStore::from_uri(uri).await?;
if object_store.is_local() {
Self::try_create_dir(uri).context(CreateDirSnafu { path: uri })?;
}
return Ok(Database {
uri: uri.to_string(),
query_string: None,
base_path,
object_store,
});
}
match parse_res {
Ok(url) if url.scheme().len() == 1 && cfg!(windows) => Self::open_path(uri).await,
Ok(mut url) => {
// iter thru the query params and extract the commit store param // iter thru the query params and extract the commit store param
let mut engine = None; let mut engine = None;
let mut mirrored_store = None;
let mut filtered_querys = vec![]; let mut filtered_querys = vec![];
// WARNING: specifying engine is NOT a publicly supported feature in lancedb yet // WARNING: specifying engine is NOT a publicly supported feature in lancedb yet
@@ -87,6 +70,13 @@ impl Database {
for (key, value) in url.query_pairs() { for (key, value) in url.query_pairs() {
if key == ENGINE { if key == ENGINE {
engine = Some(value.to_string()); engine = Some(value.to_string());
} else if key == MIRRORED_STORE {
if cfg!(windows) {
return Err(Error::Lance {
message: "mirrored store is not supported on windows".into(),
});
}
mirrored_store = Some(value.to_string());
} else { } else {
// to owned so we can modify the url // to owned so we can modify the url
filtered_querys.push((key.to_string(), value.to_string())); filtered_querys.push((key.to_string(), value.to_string()));
@@ -121,11 +111,38 @@ impl Database {
Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?; Self::try_create_dir(&plain_uri).context(CreateDirSnafu { path: plain_uri })?;
} }
let write_store_wrapper = match mirrored_store {
Some(path) => {
let mirrored_store = Arc::new(LocalFileSystem::new_with_prefix(path)?);
let wrapper = MirroringObjectStoreWrapper::new(mirrored_store);
Some(Arc::new(wrapper) as Arc<dyn WrappingObjectStore>)
}
None => None,
};
Ok(Database { Ok(Database {
uri: table_base_uri, uri: table_base_uri,
query_string, query_string,
base_path, base_path,
object_store, object_store,
store_wrapper: write_store_wrapper,
})
}
Err(_) => Self::open_path(uri).await,
}
}
async fn open_path(path: &str) -> Result<Database> {
let (object_store, base_path) = ObjectStore::from_uri(path).await?;
if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path: path })?;
}
Ok(Self {
uri: path.to_string(),
query_string: None,
base_path,
object_store,
store_wrapper: None,
}) })
} }
@@ -175,7 +192,15 @@ impl Database {
params: Option<WriteParams>, params: Option<WriteParams>,
) -> Result<Table> { ) -> Result<Table> {
let table_uri = self.table_uri(name)?; let table_uri = self.table_uri(name)?;
Table::create(&table_uri, name, batches, params).await
Table::create(
&table_uri,
name,
batches,
self.store_wrapper.clone(),
params,
)
.await
} }
/// Open a table in the database. /// Open a table in the database.
@@ -187,7 +212,7 @@ impl Database {
/// ///
/// * A [Table] object. /// * A [Table] object.
pub async fn open_table(&self, name: &str) -> Result<Table> { pub async fn open_table(&self, name: &str) -> Result<Table> {
self.open_table_with_params(name, &ReadParams::default()) self.open_table_with_params(name, ReadParams::default())
.await .await
} }
@@ -200,9 +225,9 @@ impl Database {
/// # Returns /// # Returns
/// ///
/// * A [Table] object. /// * A [Table] object.
pub async fn open_table_with_params(&self, name: &str, params: &ReadParams) -> Result<Table> { pub async fn open_table_with_params(&self, name: &str, params: ReadParams) -> Result<Table> {
let table_uri = self.table_uri(name)?; let table_uri = self.table_uri(name)?;
Table::open_with_params(&table_uri, name, params).await Table::open_with_params(&table_uri, name, self.store_wrapper.clone(), params).await
} }
/// Drop a table in the database. /// Drop a table in the database.
@@ -240,6 +265,7 @@ impl Database {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use std::fs::create_dir_all; use std::fs::create_dir_all;
use tempfile::tempdir; use tempfile::tempdir;
use crate::database::Database; use crate::database::Database;
@@ -250,15 +276,29 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap(); let uri = tmp_dir.path().to_str().unwrap();
let db = Database::connect(uri).await.unwrap(); let db = Database::connect(uri).await.unwrap();
// file:// scheme should be automatically appended if not specified assert_eq!(db.uri, uri);
// windows path come with drive letter, so file:// won't be appended }
let expected = if cfg!(windows) {
uri.to_string()
} else {
format!("file://{}", uri)
};
assert_eq!(db.uri, expected); #[cfg(not(windows))]
#[tokio::test]
async fn test_connect_relative() {
let tmp_dir = tempdir().unwrap();
let uri = std::fs::canonicalize(tmp_dir.path().to_str().unwrap()).unwrap();
let mut relative_anacestors = vec![];
let current_dir = std::env::current_dir().unwrap();
let mut ancestors = current_dir.ancestors();
while let Some(_) = ancestors.next() {
relative_anacestors.push("..");
}
let relative_root = std::path::PathBuf::from(relative_anacestors.join("/"));
let relative_uri = relative_root.join(&uri);
let db = Database::connect(relative_uri.to_str().unwrap())
.await
.unwrap();
assert_eq!(db.uri, relative_uri.to_str().unwrap().to_string());
} }
#[tokio::test] #[tokio::test]

1
rust/vectordb/src/io.rs Normal file
View File

@@ -0,0 +1 @@
pub mod object_store;

View File

@@ -0,0 +1,396 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! A mirroring object store that mirror writes to a secondary object store
use std::{
fmt::Formatter,
pin::Pin,
sync::Arc,
task::{Context, Poll},
};
use bytes::Bytes;
use futures::{stream::BoxStream, FutureExt, StreamExt};
use lance::io::object_store::WrappingObjectStore;
use object_store::{
path::Path, GetOptions, GetResult, ListResult, MultipartId, ObjectMeta, ObjectStore, Result,
};
use async_trait::async_trait;
use tokio::{
io::{AsyncWrite, AsyncWriteExt},
task::JoinHandle,
};
#[derive(Debug)]
struct MirroringObjectStore {
primary: Arc<dyn ObjectStore>,
secondary: Arc<dyn ObjectStore>,
}
impl std::fmt::Display for MirroringObjectStore {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
writeln!(f, "MirrowingObjectStore")?;
writeln!(f, "primary:")?;
self.primary.fmt(f)?;
writeln!(f, "secondary:")?;
self.secondary.fmt(f)?;
Ok(())
}
}
trait PrimaryOnly {
fn primary_only(&self) -> bool;
}
impl PrimaryOnly for Path {
fn primary_only(&self) -> bool {
self.to_string().contains("manifest")
}
}
/// An object store that mirrors write to secondsry object store first
/// and than commit to primary object store.
///
/// This is meant to mirrow writes to a less-durable but lower-latency
/// store. We have primary store that is durable but slow, and a secondary
/// store that is fast but not asdurable
///
/// Note: this object store does not mirror writes to *.manifest files
#[async_trait]
impl ObjectStore for MirroringObjectStore {
async fn put(&self, location: &Path, bytes: Bytes) -> Result<()> {
if location.primary_only() {
self.primary.put(location, bytes).await
} else {
self.secondary.put(location, bytes.clone()).await?;
self.primary.put(location, bytes).await?;
Ok(())
}
}
async fn put_multipart(
&self,
location: &Path,
) -> Result<(MultipartId, Box<dyn AsyncWrite + Unpin + Send>)> {
if location.primary_only() {
return self.primary.put_multipart(location).await;
}
let (id, stream) = self.secondary.put_multipart(location).await?;
let mirroring_upload = MirroringUpload::new(
Pin::new(stream),
self.primary.clone(),
self.secondary.clone(),
location.clone(),
);
Ok((id, Box::new(mirroring_upload)))
}
async fn abort_multipart(&self, location: &Path, multipart_id: &MultipartId) -> Result<()> {
if location.primary_only() {
return self.primary.abort_multipart(location, multipart_id).await;
}
self.secondary.abort_multipart(location, multipart_id).await
}
// Reads are routed to primary only
async fn get_opts(&self, location: &Path, options: GetOptions) -> Result<GetResult> {
self.primary.get_opts(location, options).await
}
async fn head(&self, location: &Path) -> Result<ObjectMeta> {
self.primary.head(location).await
}
// garbage collection on secondary will happen async from other means
async fn delete(&self, location: &Path) -> Result<()> {
self.primary.delete(location).await
}
async fn list(&self, prefix: Option<&Path>) -> Result<BoxStream<'_, Result<ObjectMeta>>> {
self.primary.list(prefix).await
}
async fn list_with_delimiter(&self, prefix: Option<&Path>) -> Result<ListResult> {
self.primary.list_with_delimiter(prefix).await
}
async fn copy(&self, from: &Path, to: &Path) -> Result<()> {
if from.primary_only() {
self.primary.copy(from, to).await
} else {
self.secondary.copy(from, to).await?;
self.primary.copy(from, to).await?;
Ok(())
}
}
async fn copy_if_not_exists(&self, from: &Path, to: &Path) -> Result<()> {
self.primary.copy_if_not_exists(from, to).await
}
}
struct MirroringUpload {
secondary_stream: Pin<Box<dyn AsyncWrite + Unpin + Send>>,
primary_store: Arc<dyn ObjectStore>,
secondary_store: Arc<dyn ObjectStore>,
location: Path,
state: MirroringUploadShutdown,
}
// The state goes from
// None
// -> (secondary)ShutingDown
// -> (secondary)ShutdownDone
// -> Uploading(to primary)
// -> Done
#[derive(Debug)]
enum MirroringUploadShutdown {
None,
ShutingDown,
ShutdownDone,
Uploading(Pin<Box<JoinHandle<()>>>),
Completed,
}
impl MirroringUpload {
pub fn new(
secondary_stream: Pin<Box<dyn AsyncWrite + Unpin + Send>>,
primary_store: Arc<dyn ObjectStore>,
secondary_store: Arc<dyn ObjectStore>,
location: Path,
) -> Self {
Self {
secondary_stream,
primary_store,
secondary_store,
location,
state: MirroringUploadShutdown::None,
}
}
}
impl AsyncWrite for MirroringUpload {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize, std::io::Error>> {
if !matches!(self.state, MirroringUploadShutdown::None) {
return Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"already shutdown",
)));
}
// Write to secondary first
let mut_self = self.get_mut();
mut_self.secondary_stream.as_mut().poll_write(cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), std::io::Error>> {
if !matches!(self.state, MirroringUploadShutdown::None) {
return Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"already shutdown",
)));
}
let mut_self = self.get_mut();
mut_self.secondary_stream.as_mut().poll_flush(cx)
}
fn poll_shutdown(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Result<(), std::io::Error>> {
let mut_self = self.get_mut();
loop {
// try to shutdown secondary first
match &mut mut_self.state {
MirroringUploadShutdown::None | MirroringUploadShutdown::ShutingDown => {
match mut_self.secondary_stream.as_mut().poll_shutdown(cx) {
Poll::Ready(Ok(())) => {
mut_self.state = MirroringUploadShutdown::ShutdownDone;
// don't return, no waker is setup
}
Poll::Ready(Err(e)) => return Poll::Ready(Err(e)),
Poll::Pending => {
mut_self.state = MirroringUploadShutdown::ShutingDown;
return Poll::Pending;
}
}
}
MirroringUploadShutdown::ShutdownDone => {
let primary_store = mut_self.primary_store.clone();
let secondary_store = mut_self.secondary_store.clone();
let location = mut_self.location.clone();
let upload_future =
Box::pin(tokio::runtime::Handle::current().spawn(async move {
let mut source =
secondary_store.get(&location).await.unwrap().into_stream();
let upload_stream = primary_store.put_multipart(&location).await;
let (_, mut stream) = upload_stream.unwrap();
while let Some(buf) = source.next().await {
let buf = buf.unwrap();
stream.write_all(&buf).await.unwrap();
}
stream.shutdown().await.unwrap();
}));
mut_self.state = MirroringUploadShutdown::Uploading(upload_future);
// don't return, no waker is setup
}
MirroringUploadShutdown::Uploading(ref mut join_handle) => {
match join_handle.poll_unpin(cx) {
Poll::Ready(Ok(())) => {
mut_self.state = MirroringUploadShutdown::Completed;
return Poll::Ready(Ok(()));
}
Poll::Ready(Err(e)) => {
mut_self.state = MirroringUploadShutdown::Completed;
return Poll::Ready(Err(e.into()));
}
Poll::Pending => {
return Poll::Pending;
}
}
}
MirroringUploadShutdown::Completed => {
return Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"shutdown already completed",
)))
}
}
}
}
}
#[derive(Debug)]
pub struct MirroringObjectStoreWrapper {
secondary: Arc<dyn ObjectStore>,
}
impl MirroringObjectStoreWrapper {
pub fn new(secondary: Arc<dyn ObjectStore>) -> Self {
Self { secondary }
}
}
impl WrappingObjectStore for MirroringObjectStoreWrapper {
fn wrap(&self, primary: Arc<dyn ObjectStore>) -> Arc<dyn ObjectStore> {
Arc::new(MirroringObjectStore {
primary,
secondary: self.secondary.clone(),
})
}
}
// windows pathing can't be simply concatenated
#[cfg(all(test, not(windows)))]
mod test {
use super::*;
use crate::Database;
use arrow_array::PrimitiveArray;
use futures::TryStreamExt;
use lance::{dataset::WriteParams, io::object_store::ObjectStoreParams};
use lance_testing::datagen::{BatchGenerator, IncrementingInt32, RandomVector};
use object_store::local::LocalFileSystem;
use tempfile;
#[tokio::test]
async fn test_e2e() {
let dir1 = tempfile::tempdir().unwrap().into_path();
let dir2 = tempfile::tempdir().unwrap().into_path();
let secondary_store = LocalFileSystem::new_with_prefix(dir2.to_str().unwrap()).unwrap();
let object_store_wrapper = Arc::new(MirroringObjectStoreWrapper {
secondary: Arc::new(secondary_store),
});
let db = Database::connect(dir1.to_str().unwrap()).await.unwrap();
let mut param = WriteParams::default();
let mut store_params = ObjectStoreParams::default();
store_params.object_store_wrapper = Some(object_store_wrapper);
param.store_params = Some(store_params);
let mut datagen = BatchGenerator::new();
datagen = datagen.col(Box::new(IncrementingInt32::default()));
datagen = datagen.col(Box::new(RandomVector::default().named("vector".into())));
let res = db
.create_table("test", datagen.batch(100), Some(param.clone()))
.await;
// leave this here for easy debugging
let t = res.unwrap();
assert_eq!(t.count_rows().await.unwrap(), 100);
let q = t
.search(PrimitiveArray::from_iter_values(vec![0.1, 0.1, 0.1, 0.1]))
.limit(10)
.execute()
.await
.unwrap();
let bateches = q.try_collect::<Vec<_>>().await.unwrap();
assert_eq!(bateches.len(), 1);
assert_eq!(bateches[0].num_rows(), 10);
use walkdir::WalkDir;
let primary_location = dir1.join("test.lance").canonicalize().unwrap();
let secondary_location = dir2.join(primary_location.strip_prefix("/").unwrap());
let mut primary_iter = WalkDir::new(&primary_location).into_iter();
let mut secondary_iter = WalkDir::new(&secondary_location).into_iter();
let mut primary_elem = primary_iter.next();
let mut secondary_elem = secondary_iter.next();
loop {
if primary_elem.is_none() && secondary_elem.is_none() {
break;
}
// primary has more data then secondary, should not run out before secondary
let primary_f = primary_elem.unwrap().unwrap();
// hit manifest, skip, _versions contains all the manifest and should not exist on secondary
let primary_raw_path = primary_f.file_name().to_str().unwrap();
if primary_raw_path.contains("manifest") || primary_raw_path.contains("_versions") {
primary_elem = primary_iter.next();
continue;
}
let secondary_f = secondary_elem.unwrap().unwrap();
assert_eq!(
primary_f.path().strip_prefix(&primary_location),
secondary_f.path().strip_prefix(&secondary_location)
);
primary_elem = primary_iter.next();
secondary_elem = secondary_iter.next();
}
}
}

View File

@@ -16,8 +16,10 @@ pub mod data;
pub mod database; pub mod database;
pub mod error; pub mod error;
pub mod index; pub mod index;
pub mod io;
pub mod query; pub mod query;
pub mod table; pub mod table;
pub mod utils;
pub use database::Database; pub use database::Database;
pub use table::Table; pub use table::Table;

View File

@@ -12,17 +12,22 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use chrono::Duration;
use std::sync::Arc; use std::sync::Arc;
use arrow_array::{Float32Array, RecordBatchReader}; use arrow_array::{Float32Array, RecordBatchReader};
use arrow_schema::SchemaRef; use arrow_schema::SchemaRef;
use lance::dataset::cleanup::RemovalStats;
use lance::dataset::optimize::{compact_files, CompactionMetrics, CompactionOptions};
use lance::dataset::{Dataset, WriteParams}; use lance::dataset::{Dataset, WriteParams};
use lance::index::IndexType; use lance::index::IndexType;
use lance::io::object_store::WrappingObjectStore;
use std::path::Path; use std::path::Path;
use crate::error::{Error, Result}; use crate::error::{Error, Result};
use crate::index::vector::VectorIndexBuilder; use crate::index::vector::VectorIndexBuilder;
use crate::query::Query; use crate::query::Query;
use crate::utils::{PatchReadParam, PatchWriteParam};
use crate::WriteMode; use crate::WriteMode;
pub use lance::dataset::ReadParams; pub use lance::dataset::ReadParams;
@@ -35,6 +40,9 @@ pub struct Table {
name: String, name: String,
uri: String, uri: String,
dataset: Arc<Dataset>, dataset: Arc<Dataset>,
// the object store wrapper to use on write path
store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
} }
impl std::fmt::Display for Table { impl std::fmt::Display for Table {
@@ -56,12 +64,12 @@ impl Table {
/// * A [Table] object. /// * A [Table] object.
pub async fn open(uri: &str) -> Result<Self> { pub async fn open(uri: &str) -> Result<Self> {
let name = Self::get_table_name(uri)?; let name = Self::get_table_name(uri)?;
Self::open_with_params(uri, &name, &ReadParams::default()).await Self::open_with_params(uri, &name, None, ReadParams::default()).await
} }
/// Open an Table with a given name. /// Open an Table with a given name.
pub async fn open_with_name(uri: &str, name: &str) -> Result<Self> { pub async fn open_with_name(uri: &str, name: &str) -> Result<Self> {
Self::open_with_params(uri, name, &ReadParams::default()).await Self::open_with_params(uri, name, None, ReadParams::default()).await
} }
/// Opens an existing Table /// Opens an existing Table
@@ -75,8 +83,18 @@ impl Table {
/// # Returns /// # Returns
/// ///
/// * A [Table] object. /// * A [Table] object.
pub async fn open_with_params(uri: &str, name: &str, params: &ReadParams) -> Result<Self> { pub async fn open_with_params(
let dataset = Dataset::open_with_params(uri, params) uri: &str,
name: &str,
write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
params: ReadParams,
) -> Result<Self> {
// patch the params if we have a write store wrapper
let params = match write_store_wrapper.clone() {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
let dataset = Dataset::open_with_params(uri, &params)
.await .await
.map_err(|e| match e { .map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound { lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
@@ -90,6 +108,7 @@ impl Table {
name: name.to_string(), name: name.to_string(),
uri: uri.to_string(), uri: uri.to_string(),
dataset: Arc::new(dataset), dataset: Arc::new(dataset),
store_wrapper: write_store_wrapper,
}) })
} }
@@ -97,20 +116,26 @@ impl Table {
/// ///
pub async fn checkout(uri: &str, version: u64) -> Result<Self> { pub async fn checkout(uri: &str, version: u64) -> Result<Self> {
let name = Self::get_table_name(uri)?; let name = Self::get_table_name(uri)?;
Self::checkout_with_params(uri, &name, version, &ReadParams::default()).await Self::checkout_with_params(uri, &name, version, None, ReadParams::default()).await
} }
pub async fn checkout_with_name(uri: &str, name: &str, version: u64) -> Result<Self> { pub async fn checkout_with_name(uri: &str, name: &str, version: u64) -> Result<Self> {
Self::checkout_with_params(uri, name, version, &ReadParams::default()).await Self::checkout_with_params(uri, name, version, None, ReadParams::default()).await
} }
pub async fn checkout_with_params( pub async fn checkout_with_params(
uri: &str, uri: &str,
name: &str, name: &str,
version: u64, version: u64,
params: &ReadParams, write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
params: ReadParams,
) -> Result<Self> { ) -> Result<Self> {
let dataset = Dataset::checkout_with_params(uri, version, params) // patch the params if we have a write store wrapper
let params = match write_store_wrapper.clone() {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
let dataset = Dataset::checkout_with_params(uri, version, &params)
.await .await
.map_err(|e| match e { .map_err(|e| match e {
lance::Error::DatasetNotFound { .. } => Error::TableNotFound { lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
@@ -124,6 +149,7 @@ impl Table {
name: name.to_string(), name: name.to_string(),
uri: uri.to_string(), uri: uri.to_string(),
dataset: Arc::new(dataset), dataset: Arc::new(dataset),
store_wrapper: write_store_wrapper,
}) })
} }
@@ -157,8 +183,15 @@ impl Table {
uri: &str, uri: &str,
name: &str, name: &str,
batches: impl RecordBatchReader + Send + 'static, batches: impl RecordBatchReader + Send + 'static,
write_store_wrapper: Option<Arc<dyn WrappingObjectStore>>,
params: Option<WriteParams>, params: Option<WriteParams>,
) -> Result<Self> { ) -> Result<Self> {
// patch the params if we have a write store wrapper
let params = match write_store_wrapper.clone() {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
let dataset = Dataset::write(batches, uri, params) let dataset = Dataset::write(batches, uri, params)
.await .await
.map_err(|e| match e { .map_err(|e| match e {
@@ -173,6 +206,7 @@ impl Table {
name: name.to_string(), name: name.to_string(),
uri: uri.to_string(), uri: uri.to_string(),
dataset: Arc::new(dataset), dataset: Arc::new(dataset),
store_wrapper: write_store_wrapper,
}) })
} }
@@ -190,8 +224,8 @@ impl Table {
pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> { pub async fn create_index(&mut self, index_builder: &impl VectorIndexBuilder) -> Result<()> {
use lance::index::DatasetIndexExt; use lance::index::DatasetIndexExt;
let dataset = self let mut dataset = self.dataset.as_ref().clone();
.dataset dataset
.create_index( .create_index(
&[index_builder &[index_builder
.get_column() .get_column()
@@ -221,12 +255,18 @@ impl Table {
batches: impl RecordBatchReader + Send + 'static, batches: impl RecordBatchReader + Send + 'static,
params: Option<WriteParams>, params: Option<WriteParams>,
) -> Result<()> { ) -> Result<()> {
let params = params.unwrap_or(WriteParams { let params = Some(params.unwrap_or(WriteParams {
mode: WriteMode::Append, mode: WriteMode::Append,
..WriteParams::default() ..WriteParams::default()
}); }));
self.dataset = Arc::new(Dataset::write(batches, &self.uri, Some(params)).await?); // patch the params if we have a write store wrapper
let params = match self.store_wrapper.clone() {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
self.dataset = Arc::new(Dataset::write(batches, &self.uri, params).await?);
Ok(()) Ok(())
} }
@@ -268,6 +308,41 @@ impl Table {
self.dataset = Arc::new(dataset); self.dataset = Arc::new(dataset);
Ok(()) Ok(())
} }
/// Remove old versions of the dataset from disk.
///
/// # Arguments
/// * `older_than` - The duration of time to keep versions of the dataset.
/// * `delete_unverified` - Because they may be part of an in-progress
/// transaction, files newer than 7 days old are not deleted by default.
/// If you are sure that there are no in-progress transactions, then you
/// can set this to True to delete all files older than `older_than`.
///
/// This calls into [lance::dataset::Dataset::cleanup_old_versions] and
/// returns the result.
pub async fn cleanup_old_versions(
&self,
older_than: Duration,
delete_unverified: Option<bool>,
) -> Result<RemovalStats> {
Ok(self
.dataset
.cleanup_old_versions(older_than, delete_unverified)
.await?)
}
/// Compact files in the dataset.
///
/// This can be run after making several small appends to optimize the table
/// for faster reads.
///
/// This calls into [lance::dataset::optimize::compact_files].
pub async fn compact_files(&mut self, options: CompactionOptions) -> Result<CompactionMetrics> {
let mut dataset = self.dataset.as_ref().clone();
let metrics = compact_files(&mut dataset, options).await?;
self.dataset = Arc::new(dataset);
Ok(metrics)
}
} }
#[cfg(test)] #[cfg(test)]
@@ -330,10 +405,12 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let _ = batches.schema().clone(); let _ = batches.schema().clone();
Table::create(&uri, "test", batches, None).await.unwrap(); Table::create(&uri, "test", batches, None, None)
.await
.unwrap();
let batches = make_test_batches(); let batches = make_test_batches();
let result = Table::create(&uri, "test", batches, None).await; let result = Table::create(&uri, "test", batches, None, None).await;
assert!(matches!( assert!(matches!(
result.unwrap_err(), result.unwrap_err(),
Error::TableAlreadyExists { .. } Error::TableAlreadyExists { .. }
@@ -347,7 +424,9 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let schema = batches.schema().clone(); let schema = batches.schema().clone();
let mut table = Table::create(&uri, "test", batches, None).await.unwrap(); let mut table = Table::create(&uri, "test", batches, None, None)
.await
.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10); assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches = RecordBatchIterator::new( let new_batches = RecordBatchIterator::new(
@@ -373,7 +452,9 @@ mod tests {
let batches = make_test_batches(); let batches = make_test_batches();
let schema = batches.schema().clone(); let schema = batches.schema().clone();
let mut table = Table::create(uri, "test", batches, None).await.unwrap(); let mut table = Table::create(uri, "test", batches, None, None)
.await
.unwrap();
assert_eq!(table.count_rows().await.unwrap(), 10); assert_eq!(table.count_rows().await.unwrap(), 10);
let new_batches = RecordBatchIterator::new( let new_batches = RecordBatchIterator::new(
@@ -456,7 +537,9 @@ mod tests {
..Default::default() ..Default::default()
}; };
assert!(!wrapper.called()); assert!(!wrapper.called());
let _ = Table::open_with_params(uri, "test", &param).await.unwrap(); let _ = Table::open_with_params(uri, "test", None, param)
.await
.unwrap();
assert!(wrapper.called()); assert!(wrapper.called());
} }
@@ -508,7 +591,9 @@ mod tests {
schema, schema,
); );
let mut table = Table::create(uri, "test", batches, None).await.unwrap(); let mut table = Table::create(uri, "test", batches, None, None)
.await
.unwrap();
let mut i = IvfPQIndexBuilder::new(); let mut i = IvfPQIndexBuilder::new();
let index_builder = i let index_builder = i

View File

@@ -0,0 +1,67 @@
use std::sync::Arc;
use lance::{
dataset::{ReadParams, WriteParams},
io::object_store::{ObjectStoreParams, WrappingObjectStore},
};
use crate::error::{Error, Result};
pub trait PatchStoreParam {
fn patch_with_store_wrapper(
self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<Option<ObjectStoreParams>>;
}
impl PatchStoreParam for Option<ObjectStoreParams> {
fn patch_with_store_wrapper(
self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<Option<ObjectStoreParams>> {
let mut params = self.unwrap_or_default();
if params.object_store_wrapper.is_some() {
return Err(Error::Lance {
message: "can not patch param because object store is already set".into(),
});
}
params.object_store_wrapper = Some(wrapper);
Ok(Some(params))
}
}
pub trait PatchWriteParam {
fn patch_with_store_wrapper(
self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<Option<WriteParams>>;
}
impl PatchWriteParam for Option<WriteParams> {
fn patch_with_store_wrapper(
self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<Option<WriteParams>> {
let mut params = self.unwrap_or_default();
params.store_params = params.store_params.patch_with_store_wrapper(wrapper)?;
Ok(Some(params))
}
}
// NOTE: we have some API inconsistency here.
// WriteParam is found in the form of Option<WriteParam> and ReadParam is found in the form of ReadParam
pub trait PatchReadParam {
fn patch_with_store_wrapper(self, wrapper: Arc<dyn WrappingObjectStore>) -> Result<ReadParams>;
}
impl PatchReadParam for ReadParams {
fn patch_with_store_wrapper(
mut self,
wrapper: Arc<dyn WrappingObjectStore>,
) -> Result<ReadParams> {
self.store_options = self.store_options.patch_with_store_wrapper(wrapper)?;
Ok(self)
}
}